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Introduction 

In this work three boundary value problems modeling steady heat distribution in a plane with 

a crack [ 1;1] {0}l     at variable coefficient of internal heat conductivity are studied. In all the 

problems it is assumed that the differences in temperatures and heat flows between the upper and 

lower tips of the crack l  are given. 

 Problem (1)-(3) is obtained under the assumption that the coefficient of internal heat conduc-

tivity is given by the function 
2( )G x k const  ; problem (8)-(10) is obtained under the assumption 

that 2

2 0( )
kxG x G e , where

 0 0, 0G const k const    ; problem (18)-(20) is obtained under the 

assumption that 2( )

2( )
k x

G x e , where the function 
2( )k x  satisfies the conditions stated below. Note 

that problem (8)-(10) is a special case of problem (18)-(20). 

The study of problem (1)-(3) and problem (8)-(10) was carried out as follows: the reduction 

of the initial problem to a generalized problem, the construction of a solution to the resulting gener-

alized problem; the isolation of the components, which tend to infinity fastest when approaching the 

crack tips, in the representation of the first-order derivatives of the solution to the problem under 

consideration (obtaining an asymptotic representation for heat flows); the proof of the fact that the 

solution to the generalized problem is a solution to the problem under consideration. 

Problem (18)-(20) has been studied by reducing it to problem (8)-(10). 

 

The study of stationary heat distribution in a plane with a crack 

with a constant coefficient of internal heat conductivity 

Consider the problem: 

 

 
2

1 2 1 2( , ) 0, ( , ) /v x x x x l   , (1)

 1 1 0 1 1( , 0) ( , 0) ( ), ( 1;1),v x v x q x x       (2) 

 
1 1

1 1 1

2 2

( , 0) ( , 0)
( ), ( 1;1).

v x v x
q x x

x x

   
   

 
 (3) 

 

Definition. The solution to problem (1)-(3) is a function 
1 2( , )v x x  that belongs to  2 2 /С l

 
 

and satisfies equation (1) in the region 2 / l , for which in the sense of the principal value for 
1x  

mailto:mail@angl.vrn.ru
mailto:AlexR-83@yandex.ru


belonging to  1;1 , the boundary conditions (2), (3) are fulfilled, and such that the functions 

1 2( , ),v x x  1 2

2

2

( , )v x x
x

x




 and 1 2 1 2

2 2

( , ) ( , )v x x v x x

x x

  


 
 are bounded in the vicinity of the crack l . 

 Similarly, the solution is determined for all other problems considered in this paper. 

Definition. Let 
1( )q x  belong to the space   1;1С  . By 1 [ 1;1] 1 2( ) ( , )q x x x   we denote a gen-

eralized function from  2D  acting according to the following rule: for any function 1 2( , )x x  be-

longing to the space  2D , 

 

 
1

1 [ 1;1] 1 2 1 2 1 1 1

1

( ) ( , ), ( , ) ( ) ( ,0)q x x x x x q d     



  .  

 

 Remark 1. In what follows we will assume that the functions 
0 1( )q x  and 

1 1( )q x  belong to the 

space   3 1;1С  . 

From the definition of the solution to problem (1)-(3) it follows that the function 
1 2( , )v x x  

belongs to the space  2D . Standardly calculating the generalized derivatives of the function 

1 2( , )v x x  (see [1]), we can prove the following theorem. 

Theorem 1. The solution to problem (1)-(3) is a solution to the following generalized problem: 

 

  1 2 1 1 [ 1;1] 1 2 0 1 [ 1;1] 1 2

2

( , ) ( ) ( , ) ( ) ( , )v x x q x x x q x x x
x

  


  


. (4) 

 

Remark 2. The fundamental solution of the operator   in 
2  is the function 

1
ln

2
x


 

(see [2]). 

Remark 3. The generalized function 1 [ 1;1] 1 2( ) ( , )q x x x   is finite (see [1]), and for it 

1 [ 1;1] 1 2supp ( ) ( , )q x x x l   . 

Using Remark 2, Remark 3 and the convolution theorem with a finite functional (see [1]), we 

can prove the following theorem. 

Theorem 2. Let   0 1 1 1( ), ( ) 1;1q x q x С  , then the solution to problem (4) can be represented 

in the form: 

 

 

1 1

2 20 12
1 2 1 1 1 1 1 2 12 2

1 1 21 1

( ) 1
( , ) ( ) ln ( )

2 ( ) 4

qx
v x x d q x x d

x x


   

  
 

        . (5) 

 

Using (5) and integration by parts, we can prove the following theorem. 

Theorem 3. For first-order partial derivatives of the function 
1 2( , )v x x  obtained in Theorem 2, 

for 
1 2( , )x x  belonging to 2 / l , the following representations are valid: 



 

0 01 2 2 2

2 2 2 2

1 1 2 1 2

2 2 2 21 1
1 2 1 2 1 1 2

(1) ( 1)( , )

2 (1 ) 2 (1 )

(1) ( 1)
ln[(1 ) ] ln[(1 ) ] ( , ),

4 4

q qv x x x x

x x x x x

q q
x x x x R x x

 

 


   

    


      

 (6) 

 

0 01 2 1 1

2 2 2 2

2 1 2 1 2

2 2 2 20 0

1 2 1 2 2 1 2

(1) ( 1)( , ) 1 1

2 (1 ) 2 (1 )

(1) ( 1)
ln[(1 ) ] ln[(1 ) ] ( , ),

4 4

q qv x x x x

x x x x x

q q
x x x x R x x

 

 

  
   

    

  
      

 (7) 

 

where 
1 1 2( , )R x x , 

2 1 2( , )R x x  are the functions bounded on any compact. 

Using Theorem 2 and Theorem 3, we can prove the following theorem. 

Theorem 4. The function 
1 2( , )v x x  obtained in Theorem 2, belongs to the space  2 /С l  

and is a solution to problem (1)-(3).  

 

The study of stationary heat distribution in a plane with a crack 

with an exponential coefficient of internal heat conductivity 

Consider the problem:

  

 
21 2

1 2 1 2

2

( , )
( , ) 0, ( ; ) / ,

u x x
u x x k x x x l

x


    


 (8) 

 1 1 0 1 1( , 0) ( , 0) ( ), ( 1;1),u x u x q x x     

 

 (9) 

 
1 1

1 1 1 1 1

2 2

( , 0) ( , 0)
( , 0) ( , 0) ( ), ( 1;1).

2 2

u x u xk k
u x u x q x x

x x

   
       

 
 (10) 

 

By replacing 
2

2
1 2 1 2( , ) ( , )

kx

u x x e V x x


  problem (8)-(10) is reduced to the problem: 

 

 

2
2

1 2 1 2( , ) ( , ) 0, \
4

k
V x x V x x x l    , (11) 

 1 1 0 1 1( , 0) ( , 0) ( ), ( 1;1),V x V x q x x       (12) 

 1 1
1 1 1

2 2

( , 0) ( , 0)
( ), ( 1;1).

V x V x
q x x

x x

   
   

 
 (13) 

 

By analogy with Theorem 1 we prove the following theorem. 
Theorem 5. The solution to problem (11)-(13) is a solution to the following generalized problem: 

 

  
[ 1;1]

2

1 2 1 2 1 1 [ 1;1] 1 2 0 1 1 2

2

( , ) ( , ) ( ) ( , ) ( ) ( , )
4

k
V x x V x x q x x x q x x x

x
 




   


. (14) 



Remark 4. The fundamental solution of the operator 

2

4

k
   in 2

 is the function 

1 2 0

1 | |
( , )

2 2

k
E x x K x



 
   

 
, where 

0 ( )K z  is the Macdonald function (see [2]).  

In what follows, by ( )nK z  we will denote the Macdonald function. 

Proceeding in the same way as in Theorem 2, we can prove the following theorem. 

 

Theorem 6. Let   0 1 1 1( ), ( ) 1;1q x q x С  , then the solution to problem (14) can be repre-

sented in the form: 
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 (15) 

  

Proceeding in the same way as in Theorem 3, from (15) and asymptotic estimates for the 

Macdonald functions (see [3]): 

 

2

0

1 1 ( 1)!
( ) ln (1), ( ) ( ),

2 ( / 2)

n

n n

n
K z O K z O z

z z


     

 

where 0 1,z n   , we obtain the following theorem.
 

Theorem 7. For the first-order partial derivatives of the function 1 2( , )V x x  obtained in Theo-

rem 6, for 
1 2( , )x x  belonging to 2 / l , the following representations are valid:  

 

 

0 01 2 2 2

2 2 2 2

1 1 2 1 2

2 2 2 21 1
1 2 1 2 1 1 2

(1) ( 1)( , )

2 (1 ) 2 (1 )

(1) ( 1)
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 (16) 
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(1) ( 1)( , ) 1 1
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4 4
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 (17) 

 

where 
1 1 2( , )R x x , 

2 1 2( , )R x x  are the functions bounded on any compact. 

From (15), (16) and (17) follows Theorem 8. 

Theorem 8. The function 1 2( , )V x x  obtained in Theorem 6, belongs to the space  2 /С l  

and is a solution to problem (11)-(13). 



The study of stationary heat distribution in a plane with a crack  

with a variable coefficient of internal heat conductivity 

Consider the problem:

  

 
21 2

1 2 2 1 2

2

( , )
( , ) ( ) 0, ( ; ) / ,

U x x
U x x k x x x x l

x


    


 (18) 

 

(0)

2
1 1 0 1 1( , 0) ( , 0) ( ), ( 1;1),

k

U x U x e q x x


       (19) 

 

1 1
1 1
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k
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Remark 5. In what follows we will assume that the function 
2( )k x  belongs to the space 

 4С ; there exist the constants 
1  and 

2  such that for 
2x , belonging to , the following esti-

mates 2

2 2 1( ) 0k x    , where  
22

2 2 2( ) ( ) 2 ( )k x k x k x    are fulfilled. 

By replacing 
2( )

2
1 2 1 2( , ) ( , )

k x

U x x e V x x


  problem (18)-(20) is reduced to the problem: 
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22
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( , ) ( , ) 0, \ ,

4

k x
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 1 1
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2 2

( , 0) ( , 0)
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V x V x
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The solution to problem (21)-(23) will be sought in the form: 

 

 1 2 1 2 1 2( , ) ( , ) ( , )V x x u x x W x x  , (24)
 

 

where the function 
1 2( , )u x x  is a solution to the problem: 

 

 

2
2

1 2 1 2

(0)
( , ) ( , ) 0, \ ,

4

k
u x x u x x x l     (25) 

 1 1 0 1 1( , 0) ( , 0) ( ), ( 1;1),u x u x q x x       (26) 

 1 1
1 1 1

2 2

( , 0) ( , 0)
( ), ( 1;1),

u x u x
q x x

x x

   
   

 
 (27) 

 

and the function 
1 2( , )W x x  is a solution to the problem: 



  
2

2 2 22
1 2 1 2 2 1 2

( )
( , ) ( , ) 0,25 ( ) (0) ( , ), \ ,

4

k x
W x x W x x k x k u x x x l      (28) 

 1 1 1( , 0) ( , 0) 0, ( 1;1),W x W x x       

 

(29)

     1 1
1

2 2

( , 0) ( , 0)
0, ( 1;1).

W x W x
x

x x

   
   

 
 (30) 

 

 Note that problem (25)-(27) coincides with problem (11)-(13) for (0)k k . 

Using the results obtained in the study of problem (11)-(13), we can prove the following the-

orem (see [4]). 

 Theorem 9. Let  2

2( ) kk x С  , where 2,...k  , then equation (28) has a solution, once 

continuously differentiable in the vicinity of l  and k  times continuously differentiable outside of l . 

 From Theorem 9 and the results obtained in the study of problem (11)-(13), we obtain the 

following theorem. 

Theorem 10. Let  2

2( ) kk x С  , where 2,...k  , then problem (18)-(20) has the solution 

1 2( , )U x x  and  2

1 2( , ) \ .kU x x C l  The functions 
1 2( , )U x x , 1 2 1 2

1 2

( , ) ( , )
,

U x x U x x

x x

 

 
 in the vi-

cinity of l  have the same asymptotic representation as the functions 
2( )

2
1 2( , )

k x

e u x x


, 

2( )

1 22

1

( , )
k x

u x x
e

x

 


, 

2( )

1 22

2

( , )
k x

u x x
e

x

 


, respectively, where 

1 2( , )u x x  is a solution to problem (25)-(27). 

 

 

 

Analysis of the results 

 From Theorem 3, Theorem 7 and Theorem 10 follows the coincidence, up to a constant co-

factor, of the principal terms of the asymptotic expansion of heat flows in each of the problems con-

sidered. 

 Also from these theorems it follows that the rate, at which heat flows tend to infinity, de-

pends on the way of approaching the crack tips. 

 We show this by the example of the behavior of the function 1 2

1

( , )v x x

x




 in the vicinity of the 

left tip of the crack l , the point with the coordinates ( 1;0) . From Theorem 3 it follows that in this 

case the rate of convergence to infinity is determined by the values 2

2 2

1 2(1 )

x
A

x x


 
 and 

2 2

1 2ln[(1 ) ]B x x   . 

 Consider the behavior of the values A  and B , when the point ( 1;0)  is approached along 

the curve: 

 

 
 

1

2

1 ,

, 0, , 0, 1.

x t

x t t



  

   


   

 (31) 



From (31) we obtain that if 
1

2
   , then the value 

2 2

t
A

t t



 is bounded for 0t  . Con-

sequently, the function 1 2

1

( , )v x x

x




 tends to infinity as 2 2ln[ ]t t   for 0t  . 

From (31) we obtain that if 
1

1
2

  , then 1 2

2 2 2 1 2 2

1 1

1

t
A ct

t t t t



  



 
  

 
 for 0t  , 

where 1c   for 
1

1
2

   and 
1

2
c   for 1  . Consequently, the function 1 2

1

( , )v x x

x




 tends to in-

finity as 1 2ct   for 0t  . 

From (31) we obtain that if 1  , then 
1

2 2 2 2

1 1

1

t
A t

tt t t 




  

 
 for 0t   . Conse-

quently, the function 1 2

1

( , )v x x

x




 tends to infinity as 1t  for 0t  . 

Below, Fig. 1 shows the behavior of the principal terms of the asymptotic expansion of the 

function 1 2

1

( , )v x x

x




 in the vicinity of the point ( 1;0) , provided that 0 1( 1) ( 1) 1q q    . 

 

 
Fig. 1 



Below, Fig. 2 shows the behavior of the principal terms of the asymptotic expansion of the 

function 1 2

2

( , )v x x

x




 in the vicinity of the point ( 1;0) , provided that 0 0( 1) ( 1) 1q q    . 

 
 Fig. 2 
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