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Abstract 
Refractory materials, for example ceramic materials, initially contain a multitude of defects such as 

voids, microcracks, grain boundaries etc. Particularly for refractory ceramics being exposed to high 

temperatures above 1200 °C and loaded by thermal shocks, the macroscopic properties such as 

effective compliance, strength and lifetime are essentially determined by these microscopic features 

of the material. The deformation process and failure mechanisms are going along with the creation 

of new microdefects as well as the growth and coalescence of cracks. A brittle damage model based 

on multiscale considerations and homogenisation procedures is presented. Cell models are 

developed as representative volume elements (RVE) including different microstructural features. 

The material laws themselves are formulated on the continuum level. Local failure occurs if the 

damage variable reaches a critical value. In order to properly model the thermo-mechanical 

coupling, the temperature-dependence of material constants is taken into account. Moreover, 

fracture and damage mechanical approaches are combined using different techniques. Thus, 

interactions of macroscopic crack tips and microstructural features can be taken into account.  
 

Introduction 

Refractories are generally subjected to combined thermo-mechanical loading. The challenging aim 

in this research field is to develop refractory structures with materials properties matched for 

specific applications. Above all, the thermal shock resistance is the one mechanical property, which 

has to be improved. This requires an understanding of the influence of the microstructure.  

Within the framework of continuum mechanics, it is possible to develop models at the macro level 

of the material and structural behaviour by introducing effective tensors which may contain a 

detailed representation of the microstructure and account for thermomechanical equilibrium on the 

micro-level. In connection with numerical methods, stress, deformation and damage at thermo-

mechanical loading can be determined for arbitrary structures and boundary value problems. 

However, little work has been done in this field with respect to refractory materials. 

The aim of this study is to present a simple microcrack based damage model for brittle materials 

under thermo-mechanical dynamical loading conditions. To combine fracture- and damage-

mechanical approaches, submodels containing a sharp crack tip are introduced in the FEM model at 

the ends of the damage zones. Within the submodels numerical and analytical approaches can be 

integrated, representing interactions between macro-cracks and microstructure. Furthermore, stress 

intensity factors (SIF) are by calculated using the submodel technique and alternatively the energy 

release rate is calculated from a conservation line-integral. Results are presented in terms of 

numerical simulations of damage patterns at different conditions. 



 

 
Theoretical framework 

We consider a solid continuum with thermomechanical initial and boundary conditions given by 

stresses  ⃗ and heat flux  ⃗ (Neumann) or displacement  ⃗⃗ and temperature   (Dirichlet). To 

incorporate local microstructural features, mesoscale cell models with linear elastic matrix 

properties are introduced generally containing voids, cracks or grain boundaries. The cell model 

with boundary    describes a Representative Volume Element (RVE) [1, 2] in the continuum. In the 

homogenization process generally we obtain effective elastic (     
 ) and thermal properties (   

  and 

   
 ) of an RVE. It is essential that the size of the RVE is chosen according to the condition     

 . For brittle materials typical values of an RVE are 0.1mm which is related to the microstructural 

size scale of real material [3]. The principle procedure of a homogenization process at refractory 

materials under thermal shock is illustrated in Figure 1. 

 

 
 

Fig. 1.  Problem formulation on different scales and concept of homogenization (     
  : 

effective elastic tensor,    
 : effective thermal conductivity,    

 : effective coefficients of 

expansion,  ̅⃗ : heat flux tensor,   ⃗ ̅: traction tensor) 

 

To derive average stress and strain tensors for the inhomogeneous field, we consider two 

subdomains with different properties, i.e. the defect or crack phase with volume    , interface   and 

unit normal    inside the matrix material with volume     and surface   , see Figure 2. The faces of 

the infinitely thin microcrack are separated according to the positive         and negative 

        half spaces as         . The vector of the displacement jump is defined as 

 

       
    

                                                                                                                                                   

 

The basic equation for an average macroscopic stress field in a simply connected domain   is given 

as  
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where          and         in the case of quasi static crack growth and without the action of 

body forces. Applying Gauss’s theorem, stress is transformed to the surface. We get the average 

stress 〈   〉 with     as the traction vector and    as the boundary of the RVE: 
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For the average stress in both subdomains    and     according to Figure 2 the previous equation 

leads to 
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The   
  and   

  describe the tractions at the boundaries of matrix and defect volumes. Due to 

continuity of tractions at the interface the last term in Eq. (4) is disappearing.   

 

 

Fig. 2.  Defect phase within the matrix volume of an RVE 

 

The equation of volume average macro-strain can according be given as 
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Applying the superposition principle and considering linear elastic behavior for the material matrix, 

the average strain is decomposed into a part due to the matrix and one due to the defect phase. In 

case of microcracks of zero stiffness inside the material matrix, Eq. (5) leads to the result 
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with 〈   〉  as average strain in the surrounding matrix of volume         and the displacement 

jump at the crack interface        according to Eq. (1). For a defect phase consisting of 

microcracks, the factor     . The last term of Eq. (6) 〈   〉  describes the average strain of the 

defect phase.  

 



 

Neglecting microcrack interaction, we consider a single crack with initial length    in an infinite 

domain under Mixed-Mode loading, see Figure 3. 

 
Fig. 3.  A single crack in an infinite domain under mixed-mode loading,   is the area of the 

RVE  

 

Mixed-Mode loading is considered due to arbitrary crack orientations. However, those cracks are 

assumed to be most critical, with respect to growth whose faces are perpendicular to the maximum 

principle stress. The average strain of a microcrack defect phase embedded in an RVE is derived 

from Eq. (6): 

 

 〈   〉  
 

  
∫                

 

  

                                                                                                            

 

The strain in the    – direction is obtained from Eq. (7) as 
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and the shear deformation as 
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with         
  ̅  

 
 √     

               [4] as displacement jump for Mode-I and Mode-II 

loading and   as Young’s modulus of the matrix material.  

In the following, the ratio 
   

 
   will be introduced as damage variable or crack density parameter. 

If    , the microcrack spans the whole RVE, thus the material is locally damaged. The 

macroscopic average strain of the crack phase according to the Eqs. (8) to (9) becomes 
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Eq. (10) represents an anisotropic material law for the defect phase. The effective inelastic material 

law for the damaged material evolves from Eq. (6) and leads to a generalized Hook’s law: 

 
〈   〉  〈   〉        

    〈   〉                                                                                                                  ) 

 

Here,       
     denotes the effective compliance tensor.  

 

The criterion for microcrack evolution has been chosen in equivalence to a classical R-curve based 

Mode-I macro crack growth criterion [5] 

 
                                                                                                                                                         
 

with    as Mode-   SIF depending on local stress and the crack length   and    depending on the 

crack propagation length   . Considering e.g. a damage zone at the tip of a macroscopic crack 

(Figure 4) we have two possible states. If the damage variable    holds the initial value   , the 

material is isotropic assuming a statistical distribution of orientations of microcracks. If the damage 

variable is increasing        the material becomes anisotropic due to cracks orientated 

perpendicularly to the direction of principle tensile stress    growing faster than others. Those are 

considered relevant and thus dominate in the model for damage regions, see Fig. 4. Therefore, a 

transformation of the effective elastic tensor      
  with respect to the local crack coordinate system 

  ̅   ̅   needs to be done. In our continuum damage model, there aren’t any macroscopic cracks in 

terms of free surfaces as depicted in Fig. 4, in fact the crack itself consists of a slender damage zone. 

 
 

Fig. 4. Schematic representation of a damage zone with equally distributed parallel cracks 

inside the RVE and local and global coordinate systems   

For the isotropic case, microcracks are opened in all directions within the       plane, thus the 

applied stresses are 
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They depend on the initial damage variable    and the macroscopic strain    . For the anisotropic 

case the matrix of macro stress is the following 
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The essential thermal parameters of refractory materials which influence reliability and life time are 

thermal conductivity     , thermal expansion     and specific heat   . In this work, hysteresis loops 

have been modeled for     ,      and       covering a temperature range from    °   to      ° . 

Thermally induced stresses are calculated from Hooke’s law introducing the temperature change     
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where    
    is the total strain and    

   denotes the elastic strain. In order to simulate thermal stress, the 

temperature distribution in the material is required. Therefore, the thermal field problem 

 

   
  

  
    

   

      
                                                                                                                                        

 

is solved first, supplying a transient temperature field as loading quantity for the mechanical 

boundary value problem. 

 

To describe interactions between a damage zone representing a macroscopic crack and the 

microstructure it is possible to apply a submodel technique. Since a tip of a damage zone does not 

exhibit a singularity, it is feasible to include a sharp crack tip in a submodel which is introduced in 

the global model at the end of the damage zone. Thus, fracture- and damage-mechanical approaches 

are combined in only one numerical FEM-simulation (Figure 5). In general, there is a closure effect 

due to a finite stiffness at the integration points belong to the damage zone, which can be illustrated 

as spring elements between crack faces. This effect can be observed by experimental analysis of 

thermal shock.  

 
 

Fig. 5. Global model under tensile load (left) and damage zone with crack tip submodel and 

displacement boundary condition  ̅  from global model (right) 



 

Another method to determine the stress intensity factors is to calculate the J-integral. A commercial 

implementation cannot be applied here, since there are no real crack faces in terms of free surfaces. 

Thus, a line integral is calculated with an integration contour reaching from one boundary of the 

damage zone to the other. For a Mode- I loading with the direction of crack extension   , the SIF 

evolves from [5] 
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Crack surface integrals cannot be introduced, so results of Eq. (17) are path dependent. 

 

Numerical examples 

The anisotropic, non-linear material law is implemented into the Finite Element Code ABAQUS 

using a Subroutine UMAT. Fig. 6 shows the FE-model of a plate with tensile loading   ̅  .  

 

 
 

Fig. 6. Damage zone at Mode-   loading   ̅         ) with crack tip submodel and 

integration contours 

 

The damage zone initiating at the notch is growing like a microscopic crack of length  . At the tip of 

the damage zone the submodel and two integrations contours for the J-integral are presented. In Fig. 

7    is calculated for different crack lengths applying the submodel technique and the J-integral. 

Comparing the results, both methods yield similar values.  

 

 
Fig. 7. SIF at Mode-  loading (see Fig. 6) calculated by three different methods 



 

 

Here, it should be taken into account that both methods cannot be exact transferring fracture 

mechanical concepts to continuum damage mechanics. The blue line represents the handbook 

solution for an ideal crack. Whereas bridging is taken into account at the damage model via finite 

stiffness of the damage zone, the handbook solution is based on traction-free crack surfaces, thus 

leading to much higher values of   .         

 

As a second test geometry, we take a plate with temperature jump           at the top surface, 

Fig. 8. Of course, thermal shock simulations have to account for temperature-dependent material 

data and inertia effects. In a simulation with constant parameters we observe equally spaced crack 

nucleation starting close to the surface.  

 
 

Fig. 8.  Damage patterns at thermal shock           after 20 and 60 ms with and without 

temperature dependent properties 

 

In the simulation with temperature dependent parameters     ,       and      the crack initiation 

starts underneath the surface. In any case damage zones are initiated at locations with highest 

temperature and stress gradients.   

 

Summary 

A continuum damage model for refractories ceramics is presented incorporating fracture mechanical 

approaches. Results shows damage patterns under thermal shock conditions. 
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