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Abstract. This paper investigates the use of pressure waves for harmonic test of a fractured well in 

homogeneous or double-porosity reservoirs. New analytical expressions are developed to study the 

amplitude- and phase-frequency characteristics of a well intercepted by a finite-conductivity vertical 

fracture. The asymptotic solutions for analyzing harmonic test data influenced by wellbore storage 

and fracture storage effects are presented. The proposed solutions may be used to obtain the 
formation and fracture properties by harmonic testing of fractured wells. 

 

Introduction  
Hydraulic fracturing is an effective technique for increasing productivity of damaged wells and 

wells producing in low permeability formation. Various methods have been proposed to estimate 

reservoir and fracture properties from transient pressure and flow rate data [1-7]. The purpose of this 

study is to present the analytical solutions for harmonic test analysis of fractured wells.  

The method of filtration (harmonic) pressure waves for obtaining reservoir parameters was first 

proposed by Chekalyuk [8]. Later a number of analytical models have been derived to represent 

harmonic pressure behavior for different well-reservoir configurations: line source [9-12], composite 

reservoirs [13, 14], dual porosity reservoirs [15-18], vertical wells with wellbore storage and skin 

effect [16], fractured wells [19, 20]. Method of harmonic well testing can be applied to determine 

reservoir parameters such as skin effect, damaged zone depth, formation permeability and 

compressibility. The interpretation of harmonic test requires the comparison of the experimental and 

theoretical transfer functions, defined as ratio of the pressure amplitude to the flow rate amplitude. 

Although harmonic tests are less affected by measurement noises, ones are significantly longer than 

conventional well tests. As shown by Hollaender et. al. [21], the characteristic derivative shape of 

the pressure modulus in the frequency domain had a behavior similar to time-pressure derivative 

curves in conventional well test data analysis. Therefore the interpretation methods developed for 

conventional tests may be applied to harmonic tests. 

 

Harmonic testing. The basic concept of harmonic testing is the use of a sinusoidal flow rate 

variation instead of a step change as in conventional well testing. When a pseudo-steady flow 

regime is achieved after a few periods, both flow rate and wellbore pressure exhibit a sinusoidal 

behavior. It is then possible to identify the modulus of the response and phase shift between the two 

signals. These data are used to evaluate the reservoir parameters. 

The periodic flow rate can be represented by the following complex form: 
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where AQ  is the amplitude of flow-rate, T 2  is the frequency and T  is the period. Using 

Duhamel’s superposition principle, the harmonic pressure response can be expressed as [21]: 
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where g(t) is the derivative of the pressure drop corresponding to a unit-rate drawdown. The aim of 

harmonic testing is to evaluate the modulus and argument of the function, defined as ratio between 

pressure drop and flow rate: 
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Hollaender et. al. [21] indicates that for large values of time, the function H  converges to the 

conjugate of the Fourier transform of the impulse response g (   0tg , if 0t ): 
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Using relationship between the Fourier transform and bilateral Laplace transform, the transfer 

function can be expressed as 
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where u  is  Laplace transform variable,  up  is pressure drop corresponding to a unit-rate 

drawdown in Laplace space. The solutions in term of Laplace-transform variable are widely used to 

obtain pressure distribution and well responses for a wide variety of wellbore and reservoir 

configuration [22]. Based on these solutions and equation (5), the transfer functions for different 

well-reservoir configurations can be readily modeled and analyzed. 

 

 
 

Fig.1. Vertical well with fracture. 

 

Finite conductivity fracture without fracture storage effect. Consider a vertically fractured well 

(fig. 1) in an infinite, homogeneous reservoir that contains a slightly compressible fluid of constant 



viscosity  . The reservoir has a permeability k , thickness h  and total compressibility  . Let us 

assume that the well is intercepted by fully penetrating vertical fracture of half-length fx , width w  

and permeability fk . First consider a model in which the total compressibility of the fracture is 

neglected. 

The transient pressure behavior of a fractured well produced at a constant flow rate Q  is described 

by the system of integral equations in Laplace space [6, 7]: 

 

       
uF

x
xdxduxq

F
xdxxuKuxqup

CD

d

x x

CD

dd

d 
  



 0 0

1

1

0 ,,
2

1
,    (6) 

 
u

xduxq
1

,

1

1




,          (7) 

 

where 
 




Q

ppkh
p k

d




2
, 

2

f

d
x

kt
t


 , 

f

d
x

x
x  , 

f

f

CD
kx

wk
F   is dimensionless fracture conductivity, 

kp  is initial pressure, q  is flux density and  zK0  is modified Bessel function of the second kind of 

order 0. In case of infinite-conductivity fracture ( CDF ) the system of integral equations (6)-(7) 

reduces to the result obtained by Barenblatt et. al. [11]. The assumption of infinite fracture 

conductivity is valid whenever the dimensionless fracture conductivity 300CDF  [1, 2]. 

The transfer function for a well with a finite-conductivity fracture is expressed by the system of 

integral equations: 
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where kx fd

2  is dimensionless frequency. To solve the system of integral equations (8)-(9) 

the fracture is divided into n discrete, uniform flux elements [1, 5]. The resulting system of linear 

equations with complex coefficients is solved to determine the flux modulus distribution along the 

fracture  dd ixq , , the wellbore pressure modulus  diHA   and phase shift  diH  arg . 

Fig. 2 presents the pressure and flux modulus distribution along a low conductivity fracture 

( 1CDF ). As shown in Fig. 2b, for high dimensionless frequencies the flux density is high at the 

portions of the fracture near the wellbore. The amplitude- and phase-frequency characteristics of a 

well intercepted by a finite- and infinite -conductivity fracture are shown in Fig. 3. The derivative of 

pressure modulus in the frequency domain has a behavior similar to conventional time-pressure 

derivative curves [4]. In case of finite-conductivity fracture the derivative of pressure modulus 

displays characteristic flow-regimes: (1) bilinear flow with a straight line of slope 1/4, (2) linear 

flow with a straight line of slope 1/2 and (3) pseudo-radial flow with a straight line of zero slope. 

 

Asymptotic analysis. Using equation (5) and asymptotic solution [3, 6] for bilinear flow period (a 

linear incompressible flow in fracture and linear compressible flow in formation), the transfer 

function can be expressed as 



 
 

Fig.2. Pressure modulus (a) and flux modulus (b) distribution along a finite-conductivity 

fracture at various dimensionless frequencies. 

 

 
 

Fig.3. Pressure modulus and its derivatives curves (a), phase shift curves (b) for a well with 

finite- and infinite-conductivity fracture. 

 

 
42 dCD

d
iF

iH



  , ( 1d ).        (10) 

 

By using the equation (5) and asymptotic solutions for linear and pseudo-radial flow period [1, 11], 

the transfer function for a well with infinite-conductivity fracture at high and low dimensionless 

frequencies can be expressed as: 
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where   is Euler’s constant. The equations (10) and (11) indicate that phase shift is equal to π/8 for 

bilinear flow period and π/4 for linear flow period [21]. 

It should be noted that asymptotic relations similar to (11) and (12) are used in the method of 

periodic heating of a planar probe placed on an anisotropic sample [23]. According to this method, 

the thermal properties of the sample substrate can be determined by the amplitude and phase of the 

temperature oscillations of the probe. 

 

Wellbore storage effect. Theoretical and experimental studies of harmonic well tests have shown 

that at high frequencies one must take into account the influence of wellbore storage effect [16, 24].  

The transfer function for fractured well with wellbore storage effect is given by 
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where 
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d
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 ,  C  is the wellbore storage coefficient,  upd  is Laplace transform of pressure 

corresponding to a unit-rate drawdown.  

The asymptotic solution in the Laplace space for bilinear flow period with wellbore storage effect is 

given by Wong et. al. [4]. In this case, the transfer function can be expressed as 
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As shown in Fig. 4, the wellbore storage is influence on phase shift, pressure modulus and its 

derivatives in case of high dimensionless frequencies. Pressure modulus behavior dominated by 

wellbore storage has a unit slope (Fig. 4a). The equations (13) and (14) indicate that at high 

dimensionless frequencies the phase shift tends toward π/2 (Fig. 4b).  

 

 
 

Fig.4. Pressure modulus and its derivatives curves (a), phase shift curves (b) for a fractured well 

with and without wellbore storage effect. 

 

Finite conductivity fracture with fracture storage effect. The general Laplace domain solution 

for a well with a finite-conductivity fracture including the fracture storage was developed by 



Kruysdijk [5, 7]. The transfer function for fractured well with fracture storage effect is expressed by 

the system of integral equations: 
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  is dimensionless hydraulic diffusivity of the fracture, f  is fracture 

storage coefficient. Using asymptotic solution for short-time pressure behavior [2, 3] and equation 

(5), the transfer function can be expressed as 
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Note that the expression similar to (17) is given by Despax et. al. [19]. The comparison of 

amplitude- and phase-frequency characteristics of a fractured well with and without the fracture 

storage effect is presented in Fig. 5.  

 

 
 

Fig.5. Pressure modulus and its derivatives curves (a), phase shift curves (b) for a fractured well 

with and without fracture storage effect. 

 

Fractured well in a double-porosity reservoir. Representation of naturally fractured reservoir as 

the double-porosity medium was first introduced by Barenblatt, Zheltov and Kochina [11]. A 

double-porosity reservoir consists of two distinct porous media of separate porosity and 

permeability: the matrix medium (with high storativity but a low permeability) and fissures (high 



permeability and limit storativity). Several models to study the pressure behavior of wells 

intersected by a vertical fracture in double-porosity reservoirs were developed [5, 6]. 

 

 
Fig.6. Vertically fractured well in a double-porosity reservoir. 

 

The transfer function for a well with an infinite-conductivity fracture in a double-porosity reservoir 

(Fig. 6) is expressed by the system of integral equations: 
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storativity coefficient, k  is a fissures permeability,  is interporosity flow coefficient.  

As shown in Fig. 7, the presence of interporosity flow is clearly indicated by a distinct hump on the 

pressure modulus derivative and phase shift plots. 

 

 
 

Fig.7. Pressure modulus and its derivatives curves (a), phase shift curves (b) for a well with 

infinite-conductivity fracture in a double-porosity reservoir. 

 

Summary 
In this study, new analytical solutions are presented for analyzing amplitude- and phase-frequency 

characteristics of fractured wells in homogeneous or double-porosity reservoirs. The influence of 



wellbore storage effect, fracture storage and conductivity on the pressure modulus and phase shift is 

investigated. In case of high dimensionless frequencies a set of asymptotic solution is derived. These 

solutions can be used to solve the inverse problems for obtaining the formation and fracture 

properties. 
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