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Abstract. The paper is devoted to multiscale computer modelling of defect flows along interfaces 

in loaded solids. Interfaces are considered as 2D self-organized subsystems. Discrete approach of 

stochastic excitable cellular automata (SECA, [1,2]) was extended by adding of special algorithm of 

astable cellular automata (ACA) to simulate defect propagation and microcrack nucleation. SECA 

method provides 3D-modelling at mesoscale and it takes into account grain structure of the 

material; the ACA provides microscale simulations of 2D interface behaviour. Microcrack is 

considered as a specific “phase state” of local material volume. Defect flows are controled by 

specific “driving force” calculated from the values of material torsion, couple forces and hydrostatic 

pressures distributed at the interface. Numerical experiments of fragmentation and fracture in 2D 

interface show quasiperiodic cyclic character of microcrack nucleation and defect propagation. 

Computer simulation method based on excitable cellular automata allowed revealing undetected 

effects in the form of propagation of spiral waves in specimen under indentation. It is shown that 

rotational wave flows of defects are able to cause forming of quasiperiodical defect structures along 

the interface. 
 

Introduction 

The problem of computer simulation of plastic flow and fracture of multilayer composites in contact 

interaction seems to be very significant in view of presence of multiple interfaces. The latter should 

be considered as self-maintained 2D subsystems in a solid. Such kind of study can be undertaken 

only within the framework of multiscale models of defect flows at interfaces of loaded solid. 

Multiscale models have to take into account nonlinear wave character of local material excitations, 

which lead to pulsation of mass and energy in each local material volume. The model should 

necessarily include principles of local energy dissipation. 

Numerical simulation based on cellular automata methods is generally carried out according to the 

algorithm described below: 

1. generation of geometry of internal structure of specimen; 

2. assignment of distribution of local material properties to each cell in the whole volume (for 

instance, dispersion of strength, elastic moduli, material degradation rate, dislocation density 

etc.); 

3. assignment of links between active elements of cellular automaton; 

4. definition of set of cell states and formulation of switching rules; 

5. numerical simulation of evolution of perturbance pattern in cellular automaton as a result of 

excitations of various kinds. 



Cellular automata one can divide into 3 basic types: bistable (BCA), excitable (ECA) and astable 

(ACA). Bistable cell can be found in one of two possible states. Excitable cell can run through 

serial states after single excitation (e.g. energy influx). Astable cells also run through serial states 

but this process can take place without any external influence. In order to take into account specific 

character of thermal and mechanical energy flows ECA was chosen as a simulation tool for study of 

deformed material behaviour at mesoscale. Active element of ECA is characterized by numerical 

parameters corresponding to the material (such as elastic moduli, mass density, the dislocation 

density, heat conductivity, specific heat capacity, the coefficient of thermal expansion and so on). 

Each cell is linked to its “neighbours” in 1-st coordination sphere. Heat and mechanical components 

of energy vary as a result of pair interaction with neighbour cells. Physical parameters associated 

with the cell also change. 

 

1. SECA/ACA method overview 

In the framework of SECA method area of a specimen simulated is divided into elementary 

volumes so automaton’s active cells represent sites in the space where material of the specimen is 

located. Along with states each cell has the parameters corresponding to the medium volume 

simulated. The main concept of method is that deformation process is a result of energy transfer and 

transformation. Thermal and mechanical energy can change their values and they can transit to each 

other. 

At each n-th time step of the algorithm active element interacts with neighbour cells. As a result of 

the interaction the element obtain energy from the neighbour cells. Value of mechanical energy of 

the element depends on the energy gradients between the cell and each neighbour. Total energy of 

medium elements is divided into components, which are allowed to changes of entropy, temperature 

and volume. 

Energy transfer from active element to another one occurs step-by-step. At first stage the energy dE 

is transferred from element to another one, at second stage the energy obtained by one of the 

elements is divided. 

1. a. at first time step as a result of interaction with neighbours the element can change its internal 

energy Eijk on dE’ by means of the work dA’ spent by its neighbours.  

 b. energy influx dE’ can lead to change of the heat energy dQijk and to the work production 

dAijk spent on change of element volume. 

2. at second time step the volume change causes the work production dA'', which transit to 

neighbour elements. 

The total internal energy of each elementary volume is known, so it is possible to obtain a 

distribution of normal components of stress tensor on the whole specimen with the help of 

Murnaghan equations [3]. 

In the framework of the proposed approach boundary active cells are divided into 3 types: «hard», 

«soft» and «intermediate». «Hard» boundary cells do not change own energy under interaction 

with internal automata of specimen. Interaction between such cells is not simulated. «Soft» 

boundary elements interact with all neighbours at 1
st
 coordination sphere, both internal and 

boundary cells, and its energy is changed according to the expressions for energy flow. Finally, 

«intermediate» elements do not interact with neighbour boundary automata and change own 

energy as a result of influence of internal neighbour cells at first sphere. 

Let the 3D cellular automaton simulates a specimen under mechanical loading, and face-centered 

cubic (FCC) arrangement of elements is used. Simulation of distribution of elastic energy in a solid 

under mechanical loading is realized by the following algorithm. The energy value of i-th element 

at n-th time step depends on its own energy value and the energy value of each k-th neighbour 

element at first coordination sphere of i-th element (0 ≤ k ≤ K-1, K is the number of elements at 

first sphere) at (n - 1)-th time step. 



The input parameters of the model are the initial values of cell stresses {
0

ip , 0 ≤ i ≤ I - 1} where I is 

the total number of cells. The initial elastic energy of i-th element is calculated as follows: 
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The energy of i-th cell at every n-th time step is calculated in the following way: 
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where 
n

iA  is the external influx of energy to i-th element at n-th step: 
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Here  n
ibA  is the external influx of energy to boundary cell at n-th step, Ib is the set of indices of 

boundary elements of automaton. This value is calculated starting from the modulus of elasticity of 

internal element (
n

iinY )( ) neighbouring for given boundary element and the constant value of the 

strain ( ib )( , a) or the stress ( ib )( , b) of the boundary cell. 
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The term 
n

ikA  in Eq. 2 indicates the change of the elastic energy of i-th element as a result of 

interaction with k-th neighbour at n-th time step. It is calculated by the relation: 
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where 
1n

ik  is the stress at boundary of i-th and k-th elements at (n - 1)-th time step, 
n

ik  is the strain 

of material contained in i-th element as a result of this stress, VCA is the cell volume, 
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The stress 
1n

ik  is calculated as the difference of the stresses of cell pair: 
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To obtain the strain value the velocity of boundary 
n

ikv  is calculated according to Tornbull equation: 
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The strain 
n

ik  is expressed as follows: 
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Here 
1n

ikm  is the mobility of boundary between material parts contained in i-th cell and its k-th 

neighbour at (n - 1)-th time step: 
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where   1

0

n

ik
m  is the maximal value of mobility (it depends on type of material containing in each of 

cells), kB is the Boltzmann constant, 
1n

ikQ  is the energy of the cell pair at (n - 1)-th time step, 
1n

ikT  is 

the temperature at considered boundary: 
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Taking into account Eq. 6, 10 and 11, the term 
n

ikA  in Eq. 2 is written as follows: 
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The energy of i-th element is known, so it is possible to calculate the value of its stress 
n

i : 
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where 
n

iY  is the modulus of elasticity of i-th element at n-th time step. 

Thus, at each time step the value of the «effective stress» i  is determined as the function of the 

mechanical energy Ai accumulated by i-th cell: 
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The value of the principal stress of i-th element i
~

 is calculated starting from the values of the 

effective stress of this element and its neighbours at 1
st
 coordination sphere. For that the following 

operations are carried out: 

1) The scalar values of the stresses acting on i-th cell from each of its neighbours are calculated (see 

Fig. 1):  
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Here k  is the effective stress, δ (i, k) is the membership function of k-th element at 1
st
 

coordination sphere of i-th element of simulated cellular automaton. The value of this function 

equals 1 if the cell belongs to considered set, and it equals 0 if it does not belong to set. 

2) The scalar value of the principal stress is calculated:  
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The value of the couple force vector of i-th cell iM


 is calculated as follows: 

1) The coordinates of the vectors directed from i-th cell centre centre to centres of each of its 

neighbours at 1
st
 coordination sphere are calculated (see Fig. 1):  

,ikik rrr


           (18) 

where ir


 is the radius-vector of i-th cell centre, kr


 is the radius-vector of centre of k-th cell at 1
st
 

coordination sphere of i-th cell. 

2) For each k-th element the indices l of the automata located at 1
st
 coordination spheres of i-th and 

k-th element are determined. 



3) The scalar values of the stresses are calculated (see Fig. 1).  
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4) The vector directed from each k-th automaton centre to centre of each l-th internal neighbour is 

determined (see Fig. 1):  
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5) The couple force vector lkf


 is calculated:  
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where S is the area of contact surface of neighbour elements. 

6) The required value of the couple force vector is determined:  
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where  lkik fr


,  is the vector product of the vectors obtained by Eq. 18 and 21. 

 

 
Fig. 1. 2D element of cellular automaton (i-th) and its first coordination sphere. Schematic 

picture of calculation of the principal stress and the couple force. 

 

New method based on special algorithm of astable cellular automata is developed for simulation of 

processes in interfaces. This algorithm takes into consideration nonlocal wave character of 

evolution of inelastic deformation. 

Active element of astable cellular automaton performs cyclic transfers through certain sequence of 

states. External influence on the element can accelerate or decelerate these transitions, but not stop 

them. In the simplest case ACA could be represented as a model of oscillator (see Fig. 2). Here 

levels of elastic energy can be formulated in terms of states of active element. Oscillation half-

periods depend on non-local hidden variables of the system. 

 

 
Fig. 2. The scheme of astable cellular automaton and wave character of its switching. 



2. Numerical experiment of indentation of 3D specimen taking into account 2D interface 

Specimen simulated was represented by cellular automaton in the form of system of active elements 

with the size of 0.5 µm in FCC packing. The specimen sizes were equal to 25× 10 ×25 µm. In the 

upper facet centre circle region with the diameter of 2.5 µm was located. In this region the velocity 

of growth of uniform hydrostatic stresses was assigned to 3.45 GPa/s. At every time step 

distribution of the values of the stress, the strain and the local couple force in the specimen was 

simulated. The time step was equal to 1 µs. 

As one can see at Fig. 3 (a,b), distribution of the couple force components Mx and My show bending 

of specimen surface. At the same time, the numerical experiment results shows nontrivial pattern of 

distribution of the couple force components Mz in the form of symmetrical “leaf structure” near the 

indenter at free specimen surface (see Fig. 3, c). Note that the “leaves” alternate according to the 

couple force sign, so that nonlocal total couple force equals to zero. 

   
a    b     c 

Fig. 3. Distribution of the couple force components: a) Mx, b) My, c) Mz. 

 

For detailed research of the processes to occur the graphs of dependencies of all the components of 

the couple force vs. time depth were plotted. Diagrams of torque value dependence versus time and 

depth are plotted in order to investigate deformation processes in depth of specimen under the 

“leaves”. The analysis of these graphs allows revealing spiral waves of inelastic deformation 

propagating from the “leaves” deep into the specimen (Fig. 4). 

 

 
Fig. 4. The scheme of generation of spiral waves under the indenter. 

 

Nonlinear processes such as spiral wave propagation are necessarily accompanied by dissipation of 

energy. Approaches of linear continuum mechanics and equilibrium thermodynamics do not allow 

answering the question about which part of elastic energy is spent on production of entropy. The 

answer can be given in the framework of multiscale approaches only [4, 5]. 

New original principles of dissipative processes in deformable solid were also proposed in papers of 

G.C. Sih [6] (see Fig. 5, a). This theory is based on concepts of pulsation of mass and energy. These 

concepts allow escaping principles of momentary interaction and momentary equilibrium. That is 

the common point of proposed cellular automata approaches and the theory of G.C. Sih (see 

Fig. 5, b). 



 

 
Fig. 5. The scheme of dissipative processes: a) volume and surface flows (G.C. Sih, [6]), 

b) SECA. 

 

Thus, the new method of anharmonic astable cellular automata (AACA) was developed for 

simulation of processes of material fragmentation along the “coating-substrate” interface. Due to 

above-mentioned features of ACA, it is possible to simulate processes of fatigue fracture of 

material. With the help of AACA it is possible simulating, for example, propagation of fatigue 

crack in material (see Fig. 6). In this case the probability of cell switching to the state “damaged” 

can be chosen as the value, which is reciprocal to the ultimate stress in crack point. 

 

 
Fig. 6. Use of AACA for simulation of growth of fatigue crack. 

 

Spiral waves discovered as a result of 3D simulation of plastic deformation evolution lead to 

generation of complex oscillating excitations in 2D interfaces. So the spiral wave parameters were 

used as the initial values for AACA 2D simulation. 

The results of simulation of propagation of defect flows along 2D interface between coating and 

surface are shown at Fig. 7, 8. Here P is the probability of crack growth, L is the period of crack 

life, D is the latence period of repeated crack opening. 

 

    
Fig. 7. Simulation of evolution of defect structure at 2D interface under variation of the hidden 

variables: P = 0,1; L = 25; D = 5. 

 



    
Fig. 8. Simulation of evolution of defect structure at 2D interface under variation of the hidden 

variables: P=0,2; L=25; D=5.  

 

The results represented at Fig. 7 – 8 show that under change of the value of the parameter P, which 

is associated with the ultimate stress, character of evolution of fracture pattern changes essentially. 

For instance, at Fig. 7 one can see quasi-homogeneous alligatoring (crack network). At the same 

time, the results presented at Fig. 8 show quasiperiodic character of fracture. These patterns allow 

making a conclusion about undulatory propagation of defects. 

Along with ultimate stresses characterizing local interaction only, astable cellular automaton takes 

into account influence of behaviour of the whole system on local active element. For example, 

latent period of crack opening can depend on non-local hidden variables of the system (sound 

velocity, thermal energy produced during vibration, rate of chemical reaction or phase transitions 

under various temperature values etc.). Thus, due to astable character of cellular automaton and 

taking into account its anharmonicity it is possible to describe such non-local characteristics in an 

explicit form. 

 

Summary 

Analysis of numerical experiments of specimen indentation allowed making a conclusion that spiral 

waves generate on the surface and propagate deep into the specimen. Existence of spiral waves of 

inelastic deformation was predicted theoretically by professor Egorushkin and academician Panin 

[4, 5]. However, direct numerical experiments for real structures at mesoscale, which could confirm 

this theory, were not carried out. SECA method takes into account explicitly local couple forces 

realizing the scheme “shear + rotation”. Therefore this method allows obtaining a result, which is in 

a good agreement with forecast of this theory. 

The computer simulation method based on anharmonic astable cellular automata allowed 

investigating the effect of spiral structures on the interface and predicting a possibility of generation 

of concentric waves of mass excess. This process is accompanied by forming of defect structure. 

Combination of 3D and 2D models allows providing multiscale simulation of defect structure 

generation along the interface. Under propagation through the interface the spiral wave initiates 

wave character of structure-phase transformations in the interface area. 

 

The paper is written with the partial support of Integration project of the Department of energetics, 

engineering, mechanics and control processes of RAS № 12 “Development of multilevel hybrid 

model of plastic deformation and fracture in conditions of tribological contact” and State contract 

№ 16.513.11.3030, the 30
th

 of April, 2011 «Development of ion-magnetron method of creation of 

multilayer composite coatings for experimental specimens of details for airspace engineering». 
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