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Abstract 

In this paper, digital Shearography as a non-destructive technique is deployed to determine the 

opening mode stress intensity factor in an edge cracked specimen subjected to tensile loading. The 

optical setup was consisted of two in-plane illumination sources to determine purposed strain 

variable and consequently to obtain the opening mode stress intensity factor based on the 

assumptions of linear elastic fracture mechanics (LEFM). The speckle pattern images taken by a 

CCD camera were recorded and saved on a computer. In order to utilize the advantage of whole 

field Shearography and minimise the random experimental errors, the least square technique was 

used to obtain the stress intensity factors. A finite element model of the specific geometry was 

constructed, and ABAQUS v6.7 commercial software was used to perform the analyses. 

Comparison of the experimental data with the numerical results proved the credibility and potential 

of this non-destructive method as a practical measurement technique. The average difference 

between the results obtained from experiments and those of finite element analyses was nearly 8%.  

 

Introduction  
Shearography is an interferometric technique for strain and deformation. It overmatches its 

predecessor holography in several aspects. Firstly, Shearography is a self-reference technique and 

requires no additional reference beam, which simplifies the optical setup. It greatly relaxes the 

vibration isolation requirement that makes it suitable for applications in hostile environment. 

Secondly, Shearography enables direct measurement of strain, which makes it insensitive to the 

disturbance of rigid body movement and being appropriate for debonds and crack detection since 

flaws in material cause strain concentration. Thirdly, Shearography optical setup is simple and it is 

convenient to pack up a miniature instrument for handy in-situ application. Due to these distinct 

advantages Shearography is obtaining more and more acceptance in industry as well as in laboratory 

since its invention. During the last few decades, quit a large amount of research work regarding 

Shearography has been conducted. The invention of the first working laser by Theodore H. Maiman 

in 1960 opened a door to coherent optical metrology. Since then, a series of interferometric optical 

measuring techniques such as holographic interferometry [1], Shearography [2], moire' 

interferometry [3] and speckle metrology [4] bloomed to enrich the field of experimental mechanics 

greatly. Shearography, being one of the most widely applied experimental techniques today, was 

named in 1982 and it has received a great deal of attention on the part of industrial and research 

centers [5-13]. In the present work Shearography was used for determination of opening mode SIF 

in an edge cracked specimen which is subjected to tensile load. Furthermore, finite element 

simulation of the problem is performed and the experimental results are compared with those of the 

finite element analysis.  

mailto:s.hadidimoud@gmail.com


Basis of Digital Shearography Technique 

Shearography is a distinct optical interference techniques. In other techniques the interference of 

waves is conducted through collision of a reference light mass with released waves from the body 

surface, whereas in Shearography the conducted interference is due to shearing of images in a 

shearing device. The shearing device can be a glass wedge or a Michelson interferometer, Fig.1.   

 

 
 

Fig.1. Schematic of waves' interference in Michelson interferometer [3]. 

 
As it is obvious in Fig. 1, Michelson interferometer consists of two mirrors M1 and M2 with vertical 

axes and a laser beam splitter. In this system the released beams from two points P and sP  of body 

surface interfere with each other at a point iP  on the screen. Also, with rotation of mirror 2 under a 

small angle a pair of sheared images from object surface are constructed in the camera. Due to 

interference of the two sheared images a speckle pattern is obtained. 

 

Phase Fringes Pattern Relations 

It is clear that by applying a speckle pattern in shearography technique the desired solutions cannot 

be obtained, so in this technique after applying deformation in object surface, another speckle 

pattern is provided too and by exerting correlation of two patterns the desired mechanical relations 

are obtained. To obtain stress intensity factors, two elements of in-plane strain 
x

u



  and 
y

v



  should be 

defined by test. To achieve this goal, in this study by using configuration with bi-directional 

radiation that it is shown in Fig. 2, at any stage of the body status, four images are taken as follows: 

1. The first image by making a horizontal shear with size of x , source S1 (first light source), axis x  

as horizontal,  

2. The second image by making a horizontal shear with size of x , source S2 (second light source), 

axis x  as horizontal,   

3. The third image by making a vertical shear with size of y , source S1, axis y as horizontal , and 

4. The fourth image by making a vertical shear with size of y , source S2, axis y as horizontal. 

 



 
 

Fig.2. Used digital shearography configuration in test. 

 

It is worth mentioning that axis x  is along with width of object and axis y  is along with length of 

object. Now by applying mutual correlation of corresponding images, before and after loading, four 

phase fringe patterns are obtained. 

With a simple subtraction of the phase patterns before and after loading, two desired elements can 

be obtained as follows:  
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In above relations, values B correspond with phase fringes pattern in each stage, 
xK  is radiation 

wave vector with size of 


2   in which laser wavelength   has been applied. The object rotation has 

been 
2

  around z  axis. 

As mentioned before, to obtain phase fringes pattern in each stage a computer program has been 

written, using MATLAB software environment, algorithm of this program is as follows: 

- taking optical intensities images related to two states of object, one before and the other after 

deformation, 

- returning the aforementioned images to RGB environment, 

- using a loop by calculation of maximum correlation factor to apply correlation for corresponding 

similar points of two images, 

- obtaining the size and phase of points by applying second Fourier transform, and 

- obtaining phase fringes pattern, by subtraction of phase values of two images. 

 

Experimental procedure  

  The experiment includes nine test cases that were run by three specimens under different load 

(Table1). To provide sufficient data for the study, six specimens of the same geometry were used as 

detailed in Fig. 3 and Table 2. To ensure the conditions of uniform tension in the specimens is 

maintained, the ratio of L/W was set to greater than 4. The specimens were machined out of a 3 mm 

thick Plexiglas sheet. The Young’s modulus and Poisson’s ratio of the material were obtained as 

3.34 GPa and 0.33, respectively. 



 

 

Table1. Associated specimen and loading of the test cases 

Case Specimen No. Loading(N) 

1 1 6/222 

2 1 6/344 

3 1 8/828 

4 2 9/209 

5 2 8/443 

6 2 2/808 

 

 

The wavelength of the employed He-Ne laser is 632.8(nm). In all test cases the amount of shear was 

1mm (in this example mmy 1 ). The speckle pattern images taken by the digital camera were 

recorded and saved on a computer that is shown in Fig. 4. For case 2 subtraction before and after 

loading images, the fringe demonstration 
x

u




 appear. For typical case 2 experimental shearographic 

fringes is demonstrated in Fig. 5. 

 

 
Fig.3. The Scheme of the edge cracked tension specimens 

 

Table1. Geometrical specifications of the edge cracked tension specimens 

 
Specimen 

no. 
Width, W 

(mm) 

Crack length, a 

(mm) W

a
 

Thickness, h 

(mm) 

Length, L 

(mm) 

1 55 11 0.2 3 240 

2 55 17 0.309 3 240 

 
 



Fig.4. the speckle pattern images taken by the digital camera 

 

 
 

Fig.5. experimental shearographic fringes for typical case 6 

 

Numerical solution 

A finite element model of the specific geometry is constructed, and then is analyzed with ABAQUS 

6.7.  Element CPE4R are used to represent the edge cracked specimen. The plane has modulus of 

Elasticity of 3.34 (GPa) and Poisson's ratio of 0.33. The tensile force is applied on the specimen. 

Strain derivative contours at the vicinity of the tip in X direction displayed in Fig. 7. The strain 

contours at the vicinity of the crack tip is similar to shearographic fringes. 

 
 

Fig. 7. strain derivative contours at the vicinity of the tip in X direction. 

 

Determination of IK  and IIK  values using Digital Shearography results 

By means of mechanical relation at each point of crack: 
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According to relations governing fracture mechanic [14]  in the vicinity the tip of crack, yx  ,  for a 

specimen with a crack which undertakes would be: 
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Substituting Eqs (6-9) into Eq (5) in plane strains in the vicinity the tip of the crack would be: 
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Since the illumination angle in 45  as a result we find: 
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And for shearing in y direction considering 45  : 
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In plane strains as a function of phase of selected points can be obtained from Eqs (11-12): 
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Substituting Eqs. (13-14) in Eq. (10), the stress intensity factors dependency to phase of points takes 

the form: 
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Although two data points are sufficient to determine K and K  but in order to take advantage of 

whole field shearography and increase the accuracy, the data for several points are registered and 

least square method is utilized. Then K  and K  are obtained as: 
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The SIF values are obtained for nine cases as given in Table 3. These SIF values are compared 

against those obtained through numerical solution. 

 

Table3. Comparison of numerical and digital Shearography SIFs. 

Case )( mMpaK hyShearograp  
)( mMpaKnumerical  

difference (%) 

1 0.315 0.314 0.07 

2 0.606 0.598 1.3 

3 0.742 0.729 1.7 

4 0.426 0.460 8 

5 0.694 0.734 5.8 

6 1.064 1.115 4.8 

 

Experimental SIF values are compared against those obtained through empirical relations in Table4. 

For instance, according to [15] the following relations yield first mode SIF for edge cracked 

specimens with finite dimensions under opening mode loading: 
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Where, 
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Table4. Comparison of empirical and digital Shearography SIFs. 

Case )( mMpaK hyShearograp  
)( mMpaKemprical [7] difference (%) 

1 0.315 0.342 7.9 

2 0.606 0.652 7 

3 0.742 0.794 6.6 

4 0.426 0.464 8.2 

5 0.694 0.739 6.1 

6 1.064 1.123 5.3 

 

It should be noted that since dark fringes are somewhat thick, the data points are read from 

centerline of dark fringes. Also the data points too close to the crack tip produce higher errors which 

must be crossed out. Although as the Table 3,4 indicates the accuracy of the approach, there are 

some differences due to a few error sources which follows: the distance between crack tip and data 

points is too small to measure accurately, and locating exact position of the crack tip on images is to 

some extent troublesome. Furthermore the dark bands of fringes are thick instead of narrow that are 

due to human eyes which cannot recognize where exactly the light intensity becomes minimum.  

 

Conclusions 

In this paper opening mode SIF in cracked specimen has been determined experimentally and 

numerically. Comparing the experimental and numerical values, the credibility and generality of SIF 

values are obtained for a cracked specimen by means of non-destructive technique of digital 

shearography. This comparing shows that the experimental results are reliable. Maximum 

percentage of the differences was 8.2%, Table 3 shows that for small loads the differences is lower. 
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