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ABSTRACT

Multi-material wedges are frequently observed in composite materials. They consist of two or more
sectors of dissimilar materials joined together, whose interfaces converge to the same vertex. Due to the
mismatch in the material properties, such as Young’s modulus, thermal conductivity, dielectric permittiv-
ity, or magnetic permeability, these geometrical configurations may lead to singular fields at the junction
vertex. In this paper, focusing the attention on singular harmonic problems, the mathematical analo-
gies intercurring between antiplane shear problem in elasticity due to Mode III loading or torsion, the
steady-state heat transfer problem, and the diffraction of waves in electromagnetism are presented. The
proposed unified mathematical formulation is particularly convenient for the identification of common
types of singularities (power-law or logarithmic type), for the use of a standardized method for solv-
ing the nonlinear eigenvalue problems, and for the determination of common geometrical and material
configurations permitting to relieve or remove the singularities.
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INTRODUCTION

Singular stress states occur in several boundary value problems of linear elasticity where different mate-
rials are present (see [1-3] for a wide overview). In this context, the problems of multi-material wedges
or junctions have received a great attention from the scientific community, since they are commonly ob-
served in composite materials. In linear elasticity, most of the research efforts have been directed to the
characterization of stress-singularities for in-plane loading, where the problem is governed by a bihar-
monic equation. The out-of-plane loading, also referred to as antiplane shear problem, is governed by a
simpler harmonic equation. Stress-singularities due to antiplane loading were firstly addressed by Rao
[4] in 1971. Afterwards, Fenner [5] examined the Mode III loading problem of a crack meeting a bi-
material interface using the eigenfunction expansion method proposed by Williams [6]. More recently,
Ma and Hour [7] analyzed bi-material wedges using the Mellin transform technique and Pageau et al.
[8] investigated the singular stress field of bonded and debonded tri-material junctions according to the
eigenfunction expansion method.
In 1980, Sinclair [9] discovered the mathematical analogy intercurring between the steady-state heat
transfer and the antiplane loading of composite regions (see also [3]). Very recently, Paggi et al. [10]
have established the analogy between elasticity and electromagnetism. In the solution of diffraction
problems, in fact, Bouwkamp [11] and Meixner [12] found that the electromagnetic field vectors may
become infinite at the sharp edges of a diffracting obstacle. For in-plane problems, a mathematical anal-
ogy between elasticity and fluid dynamics also exists, see [3,13,14] for more details. In this paper, the
analogies for singular harmonic problems are briefly reviewed and a unified mathematical formulation
is presented. More specifically, the eigenfunction expansion method is adopted, which has been proven
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Figure 1: Multi-material wedges in elasticity, diffusion and electromagnetism.

in [3] to be mathematically equivalent to the Muskhelishvili complex function representation and to the
Mellin transform technique for the characterization of elastic singularities at multimaterial junctions. As
a main outcome, the order of the stress-singularities of various geometrical and mechanical configura-
tions already determined in the literature can be adopted for the analogous diffusion and electromagnetic
problems, without the need of performing new calculations.

STRESS SINGULARITIES IN ANTIPLANE ELASTICITY

The geometry of a plane elastostatic problem consisting of n − 1 dissimilar isotropic, homogeneous
sectors of arbitrary angles perfectly bonded along their interfaces converging to the same vertex O is
shown in Fig. 1(a). Each of the material regions is denoted by Ωi with i = 1, . . . , n − 1, and it is
comprised between the interfaces Γi and Γi+1.
Antiplane shear (Mode III) due to out-of-plane loading on composite wedges can lead to stresses that
can be unbounded at the junction vertex O. When out-of-plane deformations only exist, the following
displacements in cylindrical coordinates can be considered with the origin at the vertex O:

ur = 0, uθ = 0, uz = uz(r, θ), (1)

where uz is the out-of-plane displacement, which depends on r and θ. For such a system of displace-
ments, the strain field components become

εr = εθ = εz = γrθ = 0, (2a)

γrz =
∂uz

∂r
, γθz =

1
r

∂uz

∂θ
. (2b)

From the application of the Hooke’s law, the stress field components are given by:

σi
r = σi

θ = σi
z = τ i

rθ = 0, (3a)

τ i
rz = Giγ

i
rz = Gi

∂ui
z

∂r
, τθz = Giγ

i
θz =

Gi

r

∂ui
z

∂θ
, (3b)

where Gi is the shear modulus of the i-th material region. The equilibrium equations in absence of body
forces reduce to a single relationship between the tangential stresses:

∂τ i
rz

∂r
+

1
r

∂τ i
θz

∂θ
+

1
r
τ i
rz = 0, ∀(r, θ) ∈ Ωi. (4)
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Introducing Eqs. (3) into Eq. (4), the harmonic condition upon uz is derived:

∂2ui
z

∂r2
+

1
r

∂ui
z

∂r
+

1
r2

∂2ui
z

∂θ2
= ∇2ui

z = 0, ∀(r, θ) ∈ Ωi. (5)

In the framework of the eigenfunction expansion method [6], the following separable variable form for
the longitudinal displacement ui

z can be adopted (∀(r, θ) ∈ Ωi):

ui
z(r, θ) =

∑

j

rλjfi,j (θ, λj), (6)

where λj are the eigenvalues of the problem and fi,j the eigenfunctions. The summation with respect
to the subscript j is introduced in Eq. (6), since it is possible to have more than one eigenvalue and the
Superposition Principle can be applied.
Introducing Eq. (6) into Eq. (5), we find the following relationship holding for each eigenvalue λj :

rλj−2

(
d2fi,j

dθ2
+ λ2

jfi,j

)
= 0. (7)

Hence, the coefficients of the term in rλj−2 must vanish, implying that the eigenfunctions fi,j are a linear
combination of trigonometric functions:

fi,j(θ, λj) = Ai,j sin(λjθ) + Bi,j cos(λjθ). (8)

If we introduce the series expansion (6) into Eqs. (3), the longitudinal displacement and the tangential
stresses can be expressed in terms of the eigenfunction and its first derivative:

ui
z = rλjfi,j = rλj [Ai,j sin(λjθ) + Bi,j cos(λjθ)] , (9a)

τ i
rz = Giλjr

λj−1fi,j = Giλjr
λj−1 [Ai,j sin(λjθ) + Bi,j cos(λjθ)] , (9b)

τ i
θz = Gir

λj−1f ′i,j = Giλjr
λj−1 [Ai,j cos(λjθ)−Bi,j sin(λjθ)] . (9c)

The determination of the power of the stress-singularity, λj − 1, can be performed by imposing the
boundary conditions (BCs) along the edges Γ1 and Γn and at the bi-material interfaces Γi, with i =
2, . . . , n− 1. Along the edges Γ1 and Γn, defined by the angles γ1 and γn, we consider two possibilities:
one corresponding to unrestrained stress-free edges

τ i
θz(r, γ1) = 0, τ i

θz(r, γn) = 0, (10)

and the other for fully restrained (clamped) edges

ui
z(r, γ1) = 0, ui

z(r, γn) = 0. (11)

At the interfaces, the following continuity conditions of displacements and stresses have to be imposed
(i = 1, . . . , n− 2):

ui
z(r, γi+1) = ui+1

z (r, γi+1), τ i
θz(r, γi+1) = τ i+1

θz (r, γi+1). (12)

In this way, a set of 2n − 2 homogeneous equations in the 2n − 1 unknowns Ai,j , Bi,j , and λj can be
symbolically written as:

Λv = 0, (13)
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where Λ denotes the coefficient matrix which depends on the eigenvalue, and v represents the vector
that collects the unknowns Ai,j and Bi,j . More specifically, the coefficient matrix entering Eq. (13) is
characterized by a sparse structure:

Λ =




N1
γ1

M1
γ2

−M2
γ2

M2
γ3

−M3
γ3

... ...
Mi−1

γi
−Mi

γi

... ...
Mn−2

γn−1
−Mn−1

γn−1

Nn−1
γn




(14)

where the non null elementary matrix Mi
θ related to the interface BCs is given by:

Mi
θ =


 sin(λjθ) cos(λjθ)

Gi cos(λjθ) −Gi sin(λjθ)


 (15)

and the components of the vector v are:

v = {v1,v2, . . . ,vi, . . . ,vn−2,vn−1}, (16)

with vi = {Ai,j , Bi,j}T . The two remaining terms Ni
θ depend on the BCs along the edges Γ1 and Γn.

For stress-free edges we have:
Ni

θ = {cos(λjθ),− sin(λjθ)}, (17)

whereas for clamped edges it is given by

Ni
θ = {sin(λjθ), cos(λjθ)}. (18)

A nontrivial solution of the equation system (13) exists if and only if the determinant of the coefficient
matrix vanishes. This condition yields an eigenequation which has to be solved for the eigenvalues λj

that, in the most general case, do depend on the elastic properties of the materials.

HEAT FLUX SINGULARITIES IN DIFFUSION PROBLEMS

The analogy between steady-state heat transfer and antiplane shear in composite regions was discovered
by Sinclair [9] in 1980. In both problems, the field equations for the longitudinal displacement, ui

z , and
for the temperature, T i, are harmonic. As a result, the following correspondences between these two
problems can be settled down:

∇2T i = 0 ⇔ ∇2ui
z = 0,

qi
r = −ki

∂T i

∂r
⇔ τ i

rz = Gi
∂ui

z

∂r
,

qi
θ =

ki

r

∂T i

∂θ
⇔ τ i

θz =
Gi

r

∂ui
z

∂θ
,

(19)

where qi
r and qi

θ are, respectively, the heat flux in the radial and circumferential directions and ki is the
thermal conductivity in the i-th material region. Therefore, the analogy is straightforward: the tempera-
ture field is analogous to the out-of-plane displacement field, whereas the heat flux components are the
analogous counterparts of the the stress field components, diverging to infinity as r → 0.
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As far as the BCs are concerned, the free-edge conditions (10) correspond to insulated edges in diffusion
problems, provided that the elastic variables are replaced by the steady-state heat transfer variables ac-
cording to (19). Similarly, the clamped BCs (11) in elasticity correspond to zero temperature prescribed
along the edges. Finally, the continuity of the longitudinal displacement uz and of the tangential stress
τθz in Eq. (12) at the interfaces corresponds to the continuity of temperature, T , and heat-flux, qθ. The
eigenvalue problem for the diffusion problem has therefore the same coefficient matrix as in Eq. (13).

SINGULARITIES IN THE ELECTRO-MAGNETIC FIELDS

Let us consider the multi-material wedge shown in Fig. 1(b). Each material is isotropic and has a di-
electric permittivity εi and a magnetic permeability µi. We also admit the presence of a perfect electric
conductor (PEC) in the region 1 defined by the interfaces Γ1 and Γn. For periodic fields with circular
frequency ω, the Maxwell’s equations for each homogeneous angular domain read [12]:

jωεiEi = ∇×Hi, −jωµiHi = ∇×Ei, (20)

where Ei and Hi are, respectively, the electric and magnetic fields, and the symbol j stands for the
imaginary unit.
In cylindrical coordinates r, θ, z, with the z axis perpendicular to the plane of the wedge, and considering
electromagnetic fields independent of z, the Maxwell’s equations reduce to the following conditions upon
the components of the electric and magnetic fields:

jωεiE
i
r =

1
r

∂H i
z

∂θ
, (21a)

jωεiE
i
θ = −∂H i

z

∂r
, (21b)

jωεiE
i
z =

1
r

∂

∂r
(rH i

θ)−
1
r

∂H i
r

∂θ
, (21c)

−jωµiH
i
r =

1
r

∂Ei
z

∂θ
, (21d)

−jωµiH
i
θ = −∂Ei

z

∂r
, (21e)

−jωµiH
i
z =

1
r

∂

∂r
(rEi

θ)−
1
r

∂Ei
r

∂θ
. (21f)

It is easy to verify that the Ei
z and H i

z components satisfy the Helmholtz equation [15]:

∂2Ei
z

∂r2
+

1
r

∂Ei
z

∂r
+

1
r2

∂2Ei
z

∂θ2
+ k2

i E
i
z = ∇2Ei

z + k2
i E

i
z = 0, (22a)

∂2H i
z

∂r2
+

1
r

∂H i
z

∂r
+

1
r2

∂2H i
z

∂θ2
+ k2

i H
i
z = ∇2H i

z + k2
i H

i
z = 0, (22b)

where ki = ω2εiµi.
In close analogy with the antiplane problem in linear elasticity, the following separable form for Ei

z and
H i

z can be postulated (∀ (r, θ) ∈ Ωi) [12]:

Ei
z(r, θ) =

∑

j

rλjfi,j (θ, λj), H i
z(r, θ) =

∑

j

rλjFi,j (θ, λj) (23)

where λj are the eigenvalues, and fi,j , and Fi,j are the eigenfunctions.
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We can introduce Eq. (23) into Eq. (22), obtaining the following equalities:

rλj−2

(
d2fi,j

dθ2
+ λ2

jfi,j

)
= 0, (24a)

rλj−2

(
d2Fi,j

dθ2
+ λ2

jFi,j

)
= 0, (24b)

Hence, we find that the eigenfunctions fi,j and Fi,j are linear combinations of trigonometric functions,
in perfect analogy with the eigenfunction fi,j in antiplane elasticity (see Eq. (8)):

fi,j(θ, λj) = Ai sin(λjθ) + Bi cos(λjθ), (25a)

Fi,j(θ, λj) = Ci sin(λjθ) + Di cos(λjθ). (25b)

These eigenfunctions are responsible for the singular behaviour of the components Ei
r, Ei

θ, H i
r and H i

θ

of the electric and magnetic fields near the wedge apex. In particular, from Eq. (21), we observe that:

Ei
r =

1
rjωεi

∂H i
z

∂θ
=

1
jωεi

∑

j

λjr
λj−1F ′

i,j ∼ O(rλj−1), (26a)

Ei
θ = − 1

jωεi

∂H i
z

∂r
= − 1

jωεi

∑

j

λjr
λj−1Fi,j ∼ O(rλj−1), (26b)

H i
r = − 1

rjωµi

∂Ei
z

∂θ
= − 1

jωµi

∑

j

λjr
λj−1f ′i,j ∼ O(rλj−1), (26c)

H i
θ =

1
jωµi

∂Ei
z

∂r
=

1
jωµi

∑

j

λjr
λj−1f ′i,j ∼ O(rλj−1). (26d)

Hence, Ei
z ∼ O(rλj ) and H i

z ∼ O(rλj ) are the analogous counterparts of ui
z and remain finite for

r → 0. Moreover, the radial components of the electric and magnetic fields, Ei
r and H i

r, are analogous
to τ i

θz and the circumferential components, Ei
θ and H i

θ, are analogous to τ i
rz . More specifically, we have

Ei
r = τ i

θz/(jωεiGi), H i
r = −τ i

θz/(jωµiGi), Ei
θ = −τ i

rz/(jωεiGi) and H i
θ = τ i

rz/(jωµiGi). All of these
components diverge when r → 0 with a power-law singularity of order −1 < (λj − 1) < 0.
Regarding the BCs, the tangential components of the electric field vanish along the edges Γ1 and Γn of
the PEC:

E1
z (r, γ1) = 0, E1

r (r, γ1) = 0, (27a)

En−1
z (r, γn) = 0, En−1

r (r, γn) = 0, (27b)

On the PEC surface also Hθ = 0, but this condition needs not be enforced, since it is a consequence of
the previous ones. Along each bi-material interface (i = 1, . . . , n− 2), the tangential components of the
electric and magnetic fields are continuous, i.e.

Ei
z(r, γi+1) = Ei+1

z (r, γi+1), Ei
r(r, γi+1) = Ei+1

r (r, γi+1), (28a)

H i
z(r, γi+1) = H i+1

z (r, γi+1), H i
r(r, γi+1) = H i+1

r (r, γi+1). (28b)

Using Eqs. (26), the BCs (27) become:

E1
z (r, γ1) = 0, (29a)

En−1
z (r, γn) = 0, (29b)

∂H1
z

∂θ
(r, γ1) = 0, (29c)

∂Hn−1
z

∂θ
(r, γn) = 0, (29d)
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whereas those defined by Eq. (28) become (i = 1, . . . , n− 2):

Ei
z(r, γi+1) = Ei+1

z (r, γi+1), (30a)

1
εi

∂H i
z

∂θ
(r, γi+1) =

1
εi+1

∂H i+1
z

∂θ
(r, γi+1) (30b)

H i
z(r, γi+1) = H i+1

z (r, γi+1), (30c)

1
µi

∂Ei
z

∂θ
(r, γi+1) =

1
µi+1

∂Ei+1
z

∂θ
(r, γi+1). (30d)

It is interesting to note that Eqs. (22), (29) and (30) can be separated into two independent sets of equa-
tions, one involving only Hz and another involving only Ez . Hence, the electromagnetic field for this
problem can be decomposed into two distinct independently evolving fields, the so-called Transverse
Electric (TE) and Transverse Magnetic (TM) fields, respectively. In particular, the TE (resp. TM) field
has vanishing electric (resp. magnetic) but nonzero magnetic (resp. electric) field parallel to the cylinder
axis z.
Considering the series expansion for Ez and Hz , along with the expressions for the eigenfunctions fi,j

and Fi,j , the boundary value problem consists of two sets of 2n− 2 equations in 2n− 1 unknowns, one
for Ez and another for Hz . The former equation set (TM case) involves the coefficients Ai,j , Bi,j and λj

and can be symbolically written as:
Λv = 0, (31)

where Λ denotes the coefficient matrix which depends on the eigenvalue and v represents the vector
which collects the unknowns Ai,j and Bi,j . The coefficient matrix in Eq. (31) has exactly the same struc-
ture as that for the elasticity problem in Eq. (13), provided that we consider Ni

θ = {sin(λjθ), cos(λjθ)}
and we set Gi = 1/µi.
The latter equation set (TE case) involves the coefficients Ci,j , Di,j and λj and can be symbolically
written as:

Λw = 0, (32)

where Λ is the coefficient matrix which depends on the eigenvalue and w represents the vector which col-
lects the unknowns Ci,j and Di,j . Again, the coefficient matrix in Eq. (32) has exactly the same structure
as that for the elasticity problem in Eq. (13), provided that we consider Ni

θ = {cos(λjθ),− sin(λjθ)}
and we set Gi = 1/εi.
For the existence of nontrivial solutions, the determinants of the coefficient matrices must vanish, yield-
ing two eigenequations that, for given values of εi and µi, determine the eigenvalues λTE

j and λTM
j .

Hence, this proves that the analysis of the singularities of the electro-magnetic field is mathematically
analogous to that for the elastic field due to antiplane loading.

CONCLUSIONS

In the present paper, we have compared and unified the mathematical formulations for the asymptotic
characterization of the singular fields at multi-material wedges in antiplane elasticity, diffusion problems
and electromagnetims. The asymptotic analysis of the stress-singularities at the vertex of multi-material
wedges and junctions in antiplane elasticity is perfectly analogous to the corresponding diffusion prob-
lem. The temperature field is analogous to the out-of-plane displacement field and the heat fluxes are
analogous to the tangential stresses. On the other hand, the analogy with electromagnetism is more com-
plex. In particular, when an isotropic multi-material wedge with PEC boundaries is considered, we have
shown that two independent problems can be defined, one for TE fields, associated to an eigenequation
for Hz , and one for TM fields, associated to an eigenequation for Ez . The eigenequation for Ez corre-
sponds exactly to that obtained for the same geometrical configuration in antiplane elasticity by setting
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Gi = 1/µi and replacing the PEC region with an infinitely stiff material leading to clamped edge BCs
along Γ1 and Γn. Similarly, the other eigenequation for Hz can be obtained in antiplane elasticity for
the same geometrical configuration by setting Gi = 1/εi and replacing the PEC region with an infinitely
soft material leading to stress-free BCs along Γ1 and Γn.
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