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ABSTRACT 

 
This paper presents an experimental and numerical study of the cyclic deformation and low-
cycle fatigue behaviour of the aluminium alloy AlCu5BiPb–T8. The experimental program 
included monotonic tensile tests, symmetric and unsymmetric strain-controlled fatigue tests, 
ratcheting strain accumulation, fracture toughness tests, as well as fatigue crack 
propagation tests. Within the framework of numerical investigations an efficient algorithm 
for modelling of cyclic plasticity is proposed. The material model is based on multi-
component forms of isotropic and kinematic hardening variables in conjunction with von 
Mises yield criterion. The computational algorithm is implemented into the finite element 
program ABAQUS and applied to the analysis of a crack growth near the notch. The 
accuracy of the computational procedure is tested by comparing the computed results with 
the real experimental data. 
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INTRODUCTION 

 
During the service life many engineering components are subjected to cyclic loading and 
fatigue fracture. Experimental data and approximate numerical predictions of fatigue and 
fracture behaviour of metallic materials under different types of loading conditions have 
been presented in a large variety of literature in recent past. Therein, numerical simulation 
of initiation and propagation of cracks subjected to complex cyclic loading histories and 
estimation of fatigue life constitute a research area which is still attracting considerable 
interest. As presented in literature, an accurate numerical modelling of nonlinear hardening 
responses represents the key for describing realistic material behaviour near the crack tip 
[1, 2].  
 
The purpose of this paper is to present the preliminary results of experimental and 
numerical investigations of ductile crack growth near the notch with the implementation of a 
robust cyclic plasticity theory [3-6]. The closest point projection algorithm for the integration 
of the cyclic plasticity constitutive model presented in [5, 6] is used to simulate low-cycle 
fatigue behaviour of an aluminium alloy. The integration algorithm and the corresponding 
consistent tangent modulus are implemented at the material point level of the available 
finite elements in the code ABAQUS [7] by using the user subroutine UMAT. The prediction 
of the crack growth is based on the material parameters generated from testing the smooth 
specimens. All tests are conducted at room temperature on a Walter Bai servohydraulic 
dynamic testing machine with a load capacity of ±50 kN. The present paper forms the 
continuation of work already reported in [8].  
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EXPERIMENTS 

 
In the present study, a series of the uniaxial strain and stress-controlled cyclic loading 
experiments with several combinations of load amplitudes are performed. In this section, a 
short description of test procedure is given, and some selected test results are presented. 
The material used in the experiment is the aluminium alloy AlCu5BiPb–T8. Table 1 gives 
the chemical composition of the aluminium alloy. The monotonic tensile stress–strain curve 

with the parameters of the Ramberg-Osgood equation ( n  and K ) are shown in Fig. 1, and 

the tensile mechanical properties obtained are listed in Table 2. Fig. 2 illustrates the 
schematic shape and geometry of specimens required for the low-cycle fatigue tests. It 
consists of smooth cylindrical specimens used for cyclic testing (Fig. 2a) and single edge 
notch bend (SENB or three-point bend) specimens (Fig. 2b) according to the standards 
ASTM EN 606 and ASTM E1820. 
 

Si Cu Fe Pb Bi Zn Mn Mg 

0.2 5.3 0.7 0.3 0.3 0.03 0.03 0.01 

 

Table 1: Chemical composition of the aluminium alloy AlCu5BiPb–T8 (in weight %) 
 

 
Fig. 1: Tensile stress–strain curve 

 
Yield strength 
σ0.2, MPa 

Ultimate tensile 
strength σm, MPa 

Elongation 
(%) 

Young’s 
modulus E, GPa 

Poisson's 
ratio ν 

305 401 22 76.7 0.33 

 
Table 2: Monotonic mechanical properties of the aluminium alloy AlCu5BiPb–T8 

           
 
 a) b) 
Fig. 2:  Shape and dimensions of specimens: a) cylindrical specimen for cyclic testing,  
 b) SENB specimen for three-point bending testing 
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The cyclic tests are carried out under strain and stress control using an extensometer with a 
gauge length of 10 mm. Fig. 3 shows the stress–strain hysteresis loops of representative 
loading cycles obtained under fully reversed symmetric and unsymmetric strain-controlled 
loading. The strain amplitude (∆ε/2) in symmetric test was equal to 1.2% (Fig. 3a), while in 
unsymmetric test the strain amplitude and mean strain were both equal to 0.8% (Fig. 3b). 
Significant cyclic hardening is observed. Furthermore, comparing corresponding hysteresis 
loops for the symmetric and unsymmetric tests, it can be concluded that mean strain has no 
significant effect on the cyclic hardening behaviour of the considered material.  
 

 
 

a) b) 
 
Fig. 3:  Comparison of the test data and the simulated model for representative stress–strain 

hysteresis loops: a) symmetric test, b) unsymmetric test  
 
The hysteresis behaviour obtained in symmetric multiple step tests is presented in Fig. 4. 
Therein, the strain amplitude is increased in steps of 0.2%, while keeping the mean strain 
equal to zero. The number of cycles at each step was 40 and the maximum strain amplitude 
was equal to 1.4%. The cyclic stress-strain curve which is especially important in studies on 
low-cycle fatigue and crack propagation is determined by connecting the tips of the 
stabilized hysteresis loops obtained from specimens tested at different amplitudes. The tips 
of the hysteresis loops were obtained with sufficient accuracy by recording a  large number 
of experimental points. In this investigation, the least squares technique is used to 

determine the material properties ′n  and ′K , which describe the Ramberg-Osgood 

expression for the cyclic stress-strain curve (Fig. 4). 
 
In order to demonstrate the influence of increasing and decreasing strain amplitudes on the 
cyclic stress response, the variable amplitude tests [3, 4] are carried out. An example of the 
results obtained is given in Fig. 5. The test consists of three steps with strain amplitudes 
equal to 1.2%, 0.8% and 1.6%. with six cycles at each step.  
 
All the ratcheting tests are conducted under stress control conditions with different 
combinations of mean stress and stress amplitude. Typical stress–strain curve of ratcheting 
test for the case with stress amplitude of 630 MPa and mean stress of 10 MPa is shown in 
Fig. 6.  
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Fig. 4: Symmetric multiple step test.  
 

 
 
Fig. 5:  Variable amplitude test with strain amplitudes equal to 1.2%, 0.8% and 1.6% 
 

 
 

Fig. 6:  Ratcheting test 

1

′σ σ 
ε = +  ′ 

n

E K

′ ′= =780MPa, 0.147K n



 5

Fracture toughness tests are conducted in three-point bending using SENB specimens, 10 
mm thick, Fig. 2b, according to the standard ASTM E1820. For determination of the fracture 
toughness (KIC=24 MPa m

1/2
) the crack resistance curve concept is applied, where the crack 

increase is determined based on compliance change. Obtained diagram, load F vs. crack 
mouth opening displacement (CMOD), is presented in Fig. 7. For the same type of 
specimen geometry, fatigue crack propagation is investigated (Fig. 8). Fifteen specimens 
are tested under the constant amplitude loading condition with three different R-ratios of 
0.1, 0.25 and 0.5. The crack length is measured using a high magnification video-camera. 
Figs. 9 and 10 present the crack growth results. 

 

     
 

Fig. 7: Load-crack mouth opening displacement (CMOD) curve 
 

 

 
Fig. 8: Fatigue crack growth in SENB specimen 
 

 
 
Fig. 9: Fatigue crack growth curve (R=0.1, ∆F/2=1.08 kN) 
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Fig. 10: Fatigue crack growth curve (R=0.25, ∆F/2=0.9 kN)  
 

 

NUMERICAL FORMULATION 

 

The applied constitutive model includes highly nonlinear multi-component forms of 
kinematic and isotropic hardening functions in conjunction with von Mises yield criterion. 
Under the assumptions of small strain and associativity of the flow rule, an isothermal 
material behaviour is considered. The basic constitutive equations of the material model are 

compiled in Table 3. Herein the Latin indices take the values 1, 2 and 3. ijS and ' ijα  are the 

deviatoric components of the stress tensor ijσ and back stress tensor ijα , respectively. λ  is 

the plastic multiplier while ijklC  abbreviates the constitutive tensor describing the material 

response. The material parameters are calibrated using test data from a constant amplitude 
tests (Fig. 3) and multiple step tests (Fig. 4). The following values are adopted: 

1 16.54 GPa=A , 2 112.602 GPa=A , 1 271.6=B , 2 2149.8=B , 1 18.15=C , 2 0=C , 

1 105 MPa=D , 2 0=D .  

 

Decomposition of total strain rate into elastic and plastic parts: e p= +& & &
ij ij ijε ε ε . (1) 

Stress tensor rate:  = &&
ij ijkl

klCσ ε . (2) 

The von Mises-type yield condition:  ( )( ) ( )21 1
' ' 0

2 3
= − − − ≤ij ij

ij ijF S S k aα α . (3) 

Associative flow rule: 
( )

p
, ,

= &&

ij ij

ij ij

F a∂ σ α
ε λ

∂ σ
. (4) 

Nonlinear kinematic hardening rule: 
2

m
m 1=

= ∑ij ijα α , 

 where p

m m m eqv m= −&& &
ij ij ijA Bα λη ε α ,   p p p

eqv

2

3
=& & &

ij

ijε ε ε . (5) 

Nonlinear isotropic hardening rule:  Y= +k aσ . (6) 

Internal variable describing isotropic hardening: 
2

m
m 1=

= ∑a a ,       where ( ) p

m m m m= −& &
eqva C D a ε . (7) 

Consistency condition in Kuhn-Tucker form:             ( ), , 0,≤ij ijF aσ α    0,≥&λ    ( ), , 0=& ij ijF aλ σ α . (8) 

Relative stress tensor: = −
ijij ijη σ α . (9) 

 
 

Table 3: Basic constitutive equations 
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To integrate the elastoplastic constitutive model a computational strategy based on the 
closest point projection scheme is applied where the rates of all measures are replaced by 
their incremental values. The proposed integration method yields only one scalar nonlinear 

equation which has to be solved for the plastic multiplier λ using the Newton iteration 
procedure. After determination of the plastic multiplier, the updated values of stresses as 
well as all internal variables can be calculated. In order to preserve numerical efficiency of 
the global iteration strategies, the consistent elastoplastic tangent modulus, derived by 
linearization of the updated algorithm, is applied. A step by step formulation is summarized 
in Table 4. More details concerning the applied computational strategy can be found in 
References [5, 6]. The derived computational algorithm is implemented in the software 
ABAQUS/Standard by using the user-defined material (UMAT) subroutine [7].  

 

 
1. Compute elastic trial state at time 

n
t: 

1 1

trial

− −= + ∆n ij n ij n ijkl n

klCσ σ ε . 

2. Check for yielding: 

( ) ( )2 1

trial 2 trial

1
0

3

−= − >n n ij nF J k aσ , 

no  →  0=nλ  →  elastic step  →   go to (5), 

yes →  0>nλ  →  plastic step. 

3. Plastic corrector phase: 

trial= − =n ij n ij n ij n ij n kl

klAη σ α η , 
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1
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Yield condition (nonlinear scalar equation):  

( ) ( )2

2 m trial

1
, , 0

3
= − =n n n n n ij nF J U k aλ η →  solution for nλ . 

4. Compute consistent elastoplastic tangent modulus. 
5. Update all internal variables and compute stress and back stress at time 

n
t. 

 

Table 4: Integration algorithm 
 

 

COMPARISON OF EXPERIMENTAL AND NUMERICAL RESULTS 

 
Fig. 3a shows a comparison of the numerical predictions and the test data obtained from 
the symmetric strain-controlled cyclic experiment. Good agreement of the solutions is 
exhibited except for the first cycle, since the kinematic hardening component is calibrated 
using the stabilized stress-strain curve. Additionally, the accuracy of the computational 
procedure is tested by comparing the computed stress-strain hysteresis loops with 
experimental data for unsymmetric test, Fig. 3b. As evident from figure, the stress-strain 
response obtained from the numerical simulations is in a good agreement with the physical 
behaviour of the material. It should be noted here that the material parameters used in all 
numerical simulations are identical to those used in symmetric strain-controlled cyclic test. 
The model is afterwards utilized to study the crack tip cyclic deformation and to predict 
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crack growth in a SENB type specimen. The geometry of SENB specimens is meshed into 
four-node first order plane-strain elements. Refined mesh is created near the crack tip 
which is modelled as initially blunted. During the fatigue simulation, the damage 
accumulation is monitored at the notch and the crack tip. The crack growth experimental 
results are presented using the relationship between the crack length measured from the 
root of the notch and the crack growth rate, as shown in Figs. 9 and 10. The numerical 
results for the crack growth are not reported in this paper. These results represent the 
content of the current research. 
 

 

CONCLUSION 

 

The cyclic deformation and low-cycle fatigue behaviour of the aluminium alloy AlCu5BiPb–
T8 has been studied experimentally and numerically. Material properties investigated 
through the experimental program are monotonic and cyclic stress-strain curves, fracture 
toughness and fatigue-crack propagation in the aluminium alloy. A numerical algorithm for 
modelling of cyclic plasticity, employing a rather realistic constitutive model with highly 
nonlinear isotropic and kinematic hardening responses is proposed. The material model 
employs the nonlinear hardening rules derived by superimposing of several hardening laws 
of the same type, which are based on the Armstrong-Frederick equations. The accuracy of 
the computational procedure is tested by comparing the computed stress-strain hysteresis 
loops with experimental data.  
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