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ABSTRACT

In this paper, the phenomenon of interface crack propagation in concrete gravity dams under seismic
loading is addressed. This problem is particularly important from the engineering point of view. In fact,
besides Mixed-Mode crack growth in concrete, dam failure is often the result of crack propagation along
the rock-concrete interface at the dam foundation. To analyze such a problem, the generalized interface
constitutive law recently proposed by the first author is used to proper modelling the phenomenon of
crack closing and reopening at the interface. A damage variable is also introduced in the cohesive zone
formulation in order to predict crack propagation under repeated loadings. Numerical examples will
show the capabilities of the proposed approach applied to concrete gravity dams.
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INTRODUCTION

Structural integrity assessment of concrete gravity dams has long been investigated (see, e.g., the recently
established NW-IALAD research network). So far, most of the proposed numerical models based either
on linear elastic [1-9] or nonlinear fracture mechanics [10, 11] concerned the simulation of Mixed-
Mode crack propagation into concrete under hydraulic and weight loads. Experimental tests on scaled
down models have also been performed in the past [12] to assess the reliability of linear elastic fracture
mechanics (LEFM) predictions. On the other hand, seismic fracture analyses are quite scarce due to their
high complexity [11,13,14]. Cracks encountered in dams require special modelling when subjected to
crack closure, as it happens during repeated loadings [14]. When nonlinear fracture mechanics (NLFM)
models are used, a nonlinear dynamic problem has to be solved [11], which is nowadays challenging due
to the large differences in the characteristic time scales of the problem.
In the present paper, the problem of crack propagation at the interface between the concrete dam and
the rock foundation is investigated. This source of damage is particularly important from the structural
integrity point of view. In fact, besides Mixed-Mode crack growth in concrete, dam failure is often the
result of crack propagation along the rock-concrete interface at the dam foundation. In this case, there is
a lack of predictive models in the literature, especially for seismic analyses. To this aim, the generalized
interface constitutive law proposed in [15] is used to proper modelling the phenomenon of crack closing
and reopening at the interface. A damage variable is suitably introduced in the cohesive zone formulation
in order to predict crack propagation under repeated loadings. A real case study is reported in the paper
showing the capabilities of the proposed approach.
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(a) Normal tractions.
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(b) Tangential tractions.

Figure 1: Normal and tangential tractions vs. normal and tangential separations for λmax = 0.2.

NUMERICAL MODEL

Cohesive zone model

Interface fracture between concrete and rock is herein modelled in the framework of NLFM, using the
interface cohesive zone model proposed by Geubelle and Baylor [16]. This model, originally applied
to composite materials, represents a natural extension of the classical bilinear cohesive zone models to
Mixed-Mode interface crack problems, where Mode Mixity is usually an important issue that cannot be
disregarded. Following this approach, a measure of interface opening and sliding, λ, is introduced:

λ =

√(
gN

lNc

)2

+
(

gT

lTc

)2

, (1)

where gN and gT denote, respectively, the normal and the tangential separations. Parameters lNc and lTc

are the critical values for the normal and the tangential gap. They correspond to the separation for which
cohesive forces transmitted through the interface vanish, i.e., complete debonding takes place. Normal
and tangential cohesive tractions are given as functions of interface opening in the process zone:

FN =





σmax

λmax

gN

lNc
0 < λ ≤ λmax,

σmax

λ

1− λ

1− λmax

gN

lNc
λmax < λ < 1;

(2)

FT =





τmax

λmax

lNc

lTc

gT

lTc
0 < λ ≤ λmax,

τmax

λ

1− λ

1− λmax

lNc

lTc

gT

lTc
λmax < λ < 1.

(3)

The effect of coupling between normal and tangential displacements upon normal and tangential tractions
is shown in Fig. 1 for λmax = 0.2. For either pure normal separation (Mode I), i.e. for gT = 0, or for
pure tangential separation (Mode II), i.e. for gN = 0, the classical bilinear cohesive laws are obtained
as limit cases. The parameter λmax has not any specific influence on the numerical results, provided that
it is chosen sufficiently small as compared to the unity to obtain a very stiff behaviour of the ascending
branch of the cohesive law.
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Contact model

Cohesive models can be used for studying the debonding stage, until a complete interfacial separation
occurs. However, due to repeated loadings, a proper modeling of crack closure is also required in order to
fully characterize the mechanical behavior of interfaces. This is achieved using the generalized interface
constitutive law proposed in [15]. When interface closure takes place, the unilateral contact constraints
are imposed, i.e.: (i) penetration is not allowed, i.e. gN ≥ 0; (ii) a closed gap between the bodies leads
to compressive contact tractions, i.e., if gN = 0, then FN < 0. When the gap is open, tractions are either
equal to zero (debonded interface) or are computed according to the cohesive zone model outlined in the
previous section.
Therefore, in analogy with the continuum, where it is required the expression of the total potential energy
of the mechanical system to set up the finite element formulation, the contact problem corresponds to
finding the minimum of a functional under boundary conditions expressed in terms of inequalities [17].
In addition to the typical displacement unknowns of the finite element method, the non-compenetrability
conditions give rise to another set of unknowns, corresponding to the contact forces, FN , acting at each
finite element node along the interface. In this framework, the numerical techniques for the solution
of such problems can be grouped into two main categories: those that satisfy the geometrical non-
compenetrability condition exactly, and those that satisfy this condition only in an approximate way. In
this study, we adopt the penalty method, which belongs to the second category. This technique presents
the advantage that the number of equations related to the continuum discretization is not increased in
the analysis. This permits to deal with a positively defined stiffness matrix with constant dimensions.
According to this approach, for a given value of the normal gap, gN , the corresponding normal force,
FN , is computed as the product of a penalty parameter, C, and the current value of the interpenetration.
Clearly, the unilateral constraint condition is recovered only for values of the penalty parameter tending
to infinity.
As far as the response of the joint in the tangential direction is concerned, two different situations have
to be considered: in the former, no tangential relative displacement occurs in the contact zone subjected
to a tangential force, FT . This behaviour is called stick. The latter is represented by a relative tangential
displacement, gT , along the contact interface, which is the so-called slip. Stick is equivalent to the case
where the relative tangential velocity is zero. Hence, the stick condition can be obtained as [19]:

ġT = 0. (4)

This condition is formulated in the current configuration and thus, in general, it imposes a nonlinear
constraint equation on the motion along the contact interface. Sliding takes place when the tangential
forces are above a certain limit, and the contacting surfaces move relative to each other. In our model,
sliding is described by the Coulomb law:

FT = −f |FN| ġT

|ġT| , if |FT| > f |FN| , (5)

where the parameter f denotes the friction coefficient, which may range from 0.6 to 0.3. In the sequel
we set f = 0.3 as a worst case situation for the interface.

Damage model for repeated loadings

In addition to the above traction-separation relations describing the behaviour of interfaces under ten-
sion/compression, a description of the damage evolution has to be provided in order to capture finite
life effects in the case of repeated loading. To this aim, the initial cohesive strengths, σmax and τmax

are replaced at each step by the actual cohesive strengths, σt
max and τ t

max, which take into account the
degradation of the cohesive law:

σt
max = σmax(1−D), τ t

max = τmax(1−D), (6)
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where D is the damage variable.
To compute the current state of damage, a description of the evolution of damage has to be provided.
For cyclic loading, the damage evolution equation has to characterize the failure of the cohesive zone
model due to cycling at subcritical loads. As a fundamental hypothesis, we assume that the increment
of damage is related to the increment of deformation times a function of the stress level, similarly to the
model proposed by Roe and Siegmund [18]:

Ḋ =
(

∆g

gmax

)α (
F

σt
max

− Fth

σmax

)β

0 ≤ Ḋ ≤ 1, (7)

where g =
√

g2
N + g2

T is the resultant separation at a given time step. Hence, ∆g = gt+∆t − gt

represents the increment of deformation from one time step to next. The variable gmax denotes the
maximum nondimensional cumulative separation length to get the failure of the cohesive zone under

cyclic loading. Finally, F =
√

F 2
N + F 2

T is the resultant traction and Fth is a threshold value under
which no damage occurs. The two exponents α and β are related to the severity of damage.
It is important to notice that the summation of the separation increments ∆g in Eq. (7) is extended to
positive increments only. In practice, this implies that reloading contributes to damage accumulation,
whereas unloading does not. To complete the formulation, the current damage is computed as:

D =
∫ t

0
Ḋ dt. (8)

Finite element algorithms

In the finite element formulation, the contributions of the nodal normal and tangential contact and cohe-
sive forces are added to the global virtual work equation [19]:

δW = Ah (FNδgN + FT δgT ) , (9)

where the symbol A denotes an assembly operator for all the interface nodes and h is the size of the
finite element. A main difficulty with the analysis, stemming from the contact constraints and the im-
perfect bonding, is that the extension of the contact and debonded zones are unknown a priori, and the
corresponding boundary value problem must be solved with an iterative method. The Newton-Raphson
solution procedures commonly used for solving nonlinear problems require the determination of the
tangent stiffness matrix. Consistent linearization of the equation set (9) leads to:

∆δW = h

(
∂FN

∂gN

∆gN +
∂FN

∂gT

∆gT

)
δgN + h

(
∂FT

∂gN

∆gN + h
∂FT

∂gT

∆gT

)
δgT

+ hFN∆δgN + hFT ∆δgT

(10)

where the symbol δ has been used for variations and the symbol ∆ denotes linearizations. Linearizations
and variations of the normal and the tangential gaps can be obtained as in [20], as well as the discretized
version of these expressions for a direct implementation in the finite element formulation based on the
node-to-segment contact strategy.
Regarding the problem of interface discretization, a major difficulty stems from the large size of the dam
as compared to the process zone size. In fact, we have two distinct length scales: one is is related to
the dam size, the so-called structural or macroscopic size, and the other is a microscopic length scale
related to the size of the process zone in front of the crack tip. To correctly capture the progress of crack
propagation, the size of the smallest finite element should be comparable with the process zone size. To
obtain an accurate solution without refining the mesh for the continuum, we adopt the virtual node tech-
nique originally proposed by Zavarise et al. [21] and then applied to interface mechanical problems in
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[20]. The basic idea underling this method consists in changing the integration scheme usually adopted
in node-to-segment contact elements. The cohesive/contact contribution to the stiffness matrix and the
internal force vector are in fact integrated on the contact element through a n-point Gauss integration
scheme instead of a simpler 2-point Newton-Cotes integration formula. In this way, an arbitrary number
of Gauss points can be specified inside each contact element along the interface, regardless of the dis-
cretization used for the continuum. Moreover, due to the cyclopic size of the dam, which requires the
use of concretes with large diameters of the aggregates, suitable values for the fracture energy and the
material tensile strength have to be considered. This is performed here according to the Multi Fractal
Scaling Law proposed by Carpinteri [22] and experimentally validated in [23, 24]. As a consequence
of the large structural size of the system, the fracture energy to be used in the numerical simulations
is higher than that obtained from laboratory specimens. The opposite trend takes place for the tensile
strength.
Moreover, another difficulty regards the use of cohesive zone models in dynamics. This often leads to
rate-dependent numerical results, although the description of the material behaviour does not explicitly
include rate-dependent parameters (see [25] for a wide discussion on this topic). Numerical rate effects
are due to the interplay between characteristic scales (length and time) of cohesive models and inertia.
In particular, a very high loading rate seems to increase the peak stresses σmax and τmax and the fracture
energy of the cohesive zone model with respect to a quasi-static analysis. This can be accounted for in the
model by including a loading rate-dependency in the cohesive zone model, as proposed in [25]. However,
this effect is not considered here for two reasons: there is a lack of experimental information about the
dynamic behaviour of real rock-concrete interfaces and the use of the same cohesive parameters as for
the quasi-static case is in favor of safety. In any case, two characteristic time scales should be considered:

t1 =
ρcLlnc

2σmax
, t2 =

a0

cL
, (11)

where cL =
√

E/ρ is the dilatational wave speed of the material, computed as the square root of the ratio
between the Young’s modulus and the mass density, and a0 is the free length of the interface in front to
the crack tip. Therefore, t1 is the intrinsic time of the cohesive zone model operating in dynamics
and therefore it is proportional to the time requested by a dilatational wave to cross the process zone.
The other time, t2, comes from the fact we are analyzing a structural problem with finite boundaries in
dynamics. To deal with this two very different time scales, time integration is performed by using the
Newmark formulae, explicit in the displacements and implicit in the velocities.

NUMERICAL APPLICATION

In this section, a numerical application of the proposed numerical model is presented for the analysis of
separation at the cold interface between rock and concrete under the action of seismic loading. In order
to analyze the effects of a real earthquake, we focus our attention on the Koyna dam geometry, for which
the ground accelerations were recorded and are used as input for the dynamic problem (see Fig. 2 for
the geometry and the undeformed mesh of the dam). The duration of the earthquake was nearly 9 s, with
accelerations peaks up to 0.4 g (see the data in [11]). In addition to the dynamic excitation, the idrostatic
pressure and the dead load are also considered in the simulation. Regarding the dynamic solution, a
Rayleigh damping model is considered as in [14], with the damping matrix linearly expressed in terms
of the mass and stiffness matrices. The Newmark parameters were also chosen as in [14] and we adopt a
time step of 2.0 ms.
Regarding the parameters of the cohesive zone model, we set the interface fracture energy equal to 250
N/m and the peak strengths σmax = τmax = 3 MPa (recent experimental results suggest that σmax and
τmax have similar to each other [26]). As far as the damage model is concerned, we set β = 0 and we
consider two cases, one with α = 1 and another with α = 2.
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Figure 2: Undeformed mesh of the Koyna dam.

Typical horizontal and vertical displacements at the crest of the dam obtained during the simulations are
shown in Fig. 3. These global displacements do not significantly depend on the value of α and are similar
to those found in [14] according to LEFM. As expected, horizontal displacements are much higher in
modulus than the vertical ones, confirming that modelling Mode Mixity is an important issue for these
problems. Moreover, note that the vertical displacements are often negative valued, implying a contact
condition at the interface. The evolution of damage along the interface strongly depend on α. Since
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(a) Horizontal displacements at the crest.
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(b) Vertical displacements at the crest.

Figure 3: Horizontal and vertical displacements at the crest of the dam vs. time.

the ratio ∆g/gmax is a quantity lower than unity, the higher the exponent α, the lower is the damage
increment. The damage evolution along the rock-concrete interface in the case of α = 1 is shown in
Fig. 4(a) for different time steps (x denotes the horizontal distance from the upstream of the dam, where
crack nucleates). The damage variable D is an increasing function of time and reaches unity for t = 6.0
s. Afterwards, no tractions are transmitted along the nucleated real crack, whose final length reaches 1.1
m at t = 6.3 s. (see also the deformed mesh in Fig. 5, along with the superimposed contour plot of the
equivalent von Mises stresses). On the contrary, when α = 2, damage is much lower, being always less
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than 0.1 (see Fig. 4(b)).
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Figure 4: Evolution of damage along the interface vs. time.
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[5] Jirásek, M.; Zimmermann, T.: Analysis of the rotating crack model, J. Engng. Mech. ASCE (1998)
Vol. 124, pp. 842-851.
[6] Lin, Shan-Wern S.; Ingraffea, A.R.: Case studies of cracking of concrete dams-a linear elastic ap-
proach, Department of Structural Engineering, Report 88-2, Cornell University, Ithaca, New York (1981).

7



[7] Linsbauer, H.N.; Ingraffea, A.R.; Rossmanith, H.P.; Wawrzynek, P.A.: Simulation of cracking in
large arch dam: part I, ASCE J. Struct. Eng. (1989) Vol. 115, pp. 1599-1615.
[8] Linsbauer, H.N.; Ingraffea, A.R.; Rossmanith, H.P.; Wawrzynek, P.A.: Simulation of cracking in
large arch dam: part II, ASCE J. Struct. Eng. (1989) Vol. 115, pp. 1616-1630.
[9] Linsbauer, H.N.: Application of the methods of fracture mechanics for the analysis of cracking in
concrete dams, Engng. Fract. Mech. (1990) Vol. 35, pp. 541-551.
[10] Barpi, F.; Valente S.: Numerical simulation of prenotched gravity dam models, J. Eng. Mech.
(2000) Vol. 126, pp. 611-629.
[11] Guanglun, W.; Pekau, O.A.; Chuhan, Z.; Shaomin, W.: Seismic fracture analysis of concrete gravity
dams based on nonlinear fracture mechanics, Eng. Fract. Mech. (2000) Vol. 65, pp. 67-87.
[12] Carpinteri, A.; Valente, S.; Ferrara, G.; Imperato, L.: Experimental and numerical fracture mod-
elling of a gravity dam. In: Z.P. Baˇant ed., Fracture Mechanics of Concrete Structures. Elsevier, The
Netherlands (1992) pp. 351-360.
[13] Chapuis, J.; Rebora, B.; Zimmermann, T.: Numerical approach of crack propagation analysis in
gravity dams during earthquakes, Proc. of the 15th ICOLD, Lausanne (1985) Vol. 2, pp. 451-473.
[14] Ayari, M.L.; Saouma, V.E.: A fracture mechanics based seismic analysis of concrete gravity dams
using discrete cracks, Engng. Fract. Mech. (1990) Vol. 47, pp. 587-598.
[15] Paggi, M.; Carpinteri, A.; Zavarise, G.: A unified interface constitutive law for the study of fracture
and contact problems in heterogeneous materials, In: P. Wriggers, U. Nackenhorst (Eds.), Analysis
and Simulation of Contact Problems, Lecture Notes in Applied and Computational Mechanics (2006),
Springer-Verlag, Berlin, Vol. 27, pp. 297-304.
[16] Geubelle, P.H., Baylor, J.S.: Impact-induced delamination of composites: a 2D simulation, Com-
posites Part B: Engineering (1998) Vol. 29, pp. 589-602.
[17] Panagiotopoulos, P.D.: Inequality Problems in Mechanics and Applications, Birkhäuser Verlag,
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