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Abstract. This paper presents the discontinuous Galerkin (dG) method with interior penalties and 
its implementation for the interface crack growth. The interface fracture is modeled using cohesive 
zone models. The discontinuous Galerkin method is a finite element method, which uses 
discontinuous, piecewise polynomial spaces for the numerical solution and the test functions. The 
method is endowed with several features including flexibility and stability with respect to adaptivity 
of mesh and polynomial approximations. A numerical example is presented to illustrate the ability 
of the dG method to accurately model interface cracking phenomena. Numerical evidence suggests 
the absence of spurious traction oscillations when discontinuous Galerkin method is used in 
conjunction with cohesive models. Compared to conventional interface elements, the discontinuous 
Galerkin method has the advantage of allowing crack formation without insertion of cohesive 
elements during the simulation. 

Introduction
The interface fracture phenomena play an important role in a number of applications especially 

in laminate composite systems. Frequently, singular forces are supported on these interfaces (e.g. 
surface tension forces) and material parameters might be discontinuous across the interface. 
Delamination (interlamiar damage) is a typical kind of interface fracture phenomena which occurs 
in laminate materials (see Fig. 1), often accompanied with transverse matrix cracking or fiber 
fracture (intralaminar damage). 

When modeling interface fracture phenomena, the standard way to solve fracture problems with 
finite element methods consists of inserting interface elements (see Fig. 1) with zero thickness in 
the mesh at places where cracking is expected to occur [1, 2, 3]. A main advantage of the use of 
interface elements is the capability to predict both onset and propagation of delamination without 
previous knowledge of the crack location and propagation direction. 
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Fig. 1. Modeling of interface fracture 

From a modeling perspective, a major drawback of the use of interface elements is that the 
insertion of cohesive elements introduces an artificial compliance in the structure which is primarily 
related to the initial slope of the traction-separation law: a stiffer slope introduces a higher initial 
rigidity between neighboring bulk elements, thus resulting in a smaller fictitious compliance. 
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On the other hand, a high elastic stiffness of the cohesive surface compared to the elastic 
stiffness of the bulk material can result in artificial oscillations prior to the opening of the cohesive 
surface. Moreover, some interface elements require a special topology when they are applied in 
conjunction with solid-like shell elements [3]. 

The need to develop a computational procedure for interface fracture phenomena that retains the 
advantages of the cohesive models is therefore self-evident. A candidate approach is the class of 
discontinuous Galerkin methods, which have recently shown promise in a variety of solid 
mechanics problems. 

The discontinuous Galerkin method is a class of finite element methods, which uses 
discontinuous, piecewise polynomial spaces for the numerical solution and the test functions. The 
discontinuous Galerkin method was first proposed in 1973 for approximating the neutron transport 
problems by Reed and Hill [4]. Since then important contribution were given by Douglas and 
Dupont [5], Wheeler [6], and Arnold [7] who extended the Nitsche [8] approach to weakly enforce 
the continuity of the solution at interior edges: jump terms in the unknown variable across internal 
boundaries were introduced, and the jump terms were penalized to enforce continuity across the 
element interface. A comprehensive description of discontinuous Galerkin methods can be found in 
[9]. Within the context of elasticity, in recent years, there have been important contributions by 
Zienkiewicz et al. [10], Riviere, et al. [11], Epshteyn and Rivière [12] Lew et al. [13], Eyck and 
Lew [14]. 

The main features of discontinuous Galerkin methods are: (i) the weighting and trial functions 
are identical (ii) the discontinuous Galerkin methods are locally mass conservative at the element 
level - the element topology, the degree of approximation and even the choice of governing 
equations can vary from element to element and in time over the course of calculation without loss 
of rigor in the method; (iii) the discontinuous Galerkin methods capture the discontinuity in the 
solution very well by the nature of discontinuous function space; thus, the these methods are 
naturally suited for the application within the computational interface. A particularly powerful 
combination is to couple dG method with cohesive law; (iv) from a computer point of view, the 
simple communication pattern between elements makes discontinuous Galerkin method potentially 
being well parallelizable. 

The obvious disadvantage of the DG method is the increased number of degrees of freedom for 
the same order of approximation. Thus, another disadvantage of DG methods is its high storage and 
high computational requirements.

The main objective of this paper is to develop and implement a numerical scheme aimed at 
modeling interface fracture phenomena using discontinuous Galerkin method. The resulting 
discontinuous Galerkin weak form naturally leads to the implementation of cohesive models. The 
performances of the discontinuous Galerkin method for interfacial fracture problems are 
demonstrated through a numerical example. 

Problem statement and weak formulation 

Consider the boundary value problem of a general three-dimensional body 3���  in equilibrium 
such that in Fig. 2. The body is supported on the area ��D  with prescribed displacements and is 
subjected to surface tractions on the surface area ��N . In addition, the body is subjected to 
externally applied body forces b. The continuum problem is governed by the following equations 
stated in terms of the Cauchy stress 
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in which � is the stress tensor, 	  is the gradient operator, u is displacement vector, n is the unit 
normal vector to the surface, and Dg  and Ng  are the boundary conditions applied on the 
displacement ��D  and traction ��N  parts of the boundary, respectively. 
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Fig. 2. Body with prescribed displacements and traction conditions 

Let }K{h ��  be a shape-regular partition of � , where K are finite elements. The reference 
configuration �  is approximated by h�  such that 

eE
1eh~ ���� �� , 0e

ee
e ��� �

���  (2) 

where e�  represents the interior of sub-domain e� . It is assumed that h�  satisfies the necessary 
admissibility and Lipschitz continuity conditions [10]. 

A finite-dimensional piecewise polynomial approximation of the field u  is defined on h�  by 
introducing the following space [10]: 

� �� �h
ek
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h
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�
 (3) 

where )(P ek �  is the space of polynomial functions of order up to k  with support in e� . The 
polynomial order approximation is the same for all unknown fields. These spaces differ from the 
conventional finite element spaces in that they allow for jump discontinuities at inter-element 
boundaries of polynomial order k . To construct a numerical scheme with high order accuracy in 
the vicinity of discontinuities, we require all discontinuities to lie on element boundaries, Fig. 3. 
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Fig. 3. Discontinuous finite element mesh 
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Let b  denote an arbitrary element edge, and }b{�� , 
� �� bbb , be the set of all edges. Each 
element boundary b  is shared by two elements �K  and 
K  such that 
� �� KKb , with �n  being 
the unit outward normal vector to element �K (see Fig. 3). 

The set of all edges �  is decomposed into three disjoints subsets such that NDI ������� ,
where I�  is the set of all internal edges, }K:\Kb{ hI �������� ; D�  is the set of all element 
edges on the Dirichlet part of the boundary ��D , }K:Kb{ hDD ��������� ; N�  is the set of 
all element edges on the Neumann part of the boundary ��N , }K:Kb{ hNN ��������� .

The definitions of the average and jump are given by 
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We have assumed that 
� 
� nn Ix �� . The + and – superscripts correspond to evaluating the 
function at either side of the edge b .

If the Dirichlet boundary conditions are enforced weakly, the resulting stabilized problem can be 
written as finding k

hh Vu �  such that k
hVv�  [11, 12]: 

)b;v(L)u,v(B h �  (6) 
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In the above equations �  is the penalty parameter defined by 

eh
�

�� (9)

where �  is positive constant (assumed sufficiently large), and eh  is the characteristic length of the 
mesh obtained from the two neighboring elements as [11] 
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in which L is the length of an element edge and A is the area of an element K. 
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The parameter �  is either +1, or -1, corresponding to non-symmetric [7, 9] and symmetric 
interior penalty methods [6, 9], respectively. The last two terms in Eq. (7) are commonly considered 
to enhance the stability of the method. 

Finite element implementation 
The interpolation of the displacement and its jump is accomplished with standard finite element 
shape functions )(N % , where ),,( 321 %%%�%  are the natural coordinates, 

� � eh uNu %�  (11) 

& ' � � � � 

�� %
%� bbbbh uNuNu  (12) 

where eu  are the nodal degrees of freedom of the element K, �bN  - the standard finite element 
shape functions for positive internal boundary �b , �bu  - the nodal degrees of freedom of the 
positive internal boundary �b .

The average of projected gradients of test and trial functions is interpolated using the same 
technique
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in which �bn  is the inter-element outer surface normal corresponding to element �K  (see Fig. 3). 
When interpolations (11)-(12) are inserted in Eq. (7), the following expression for the bilinear 

form is obtained: 
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On substituting the interpolation (11) in Eq. (8), the following expression for the linear follows: 
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In the above equations, D is the material moduli tensor, and B is the matrix of the shape function 
derivative.

Cohesive interface model 
In a cohesive zone model the material separation behavior is described within a softening 
constitutive equation relating the crack surface tractions to the material separation across the crack. 
The softening traction–separation law represents the physical processes of material deterioration 
occurring in the element interface [15].  

In the computation an irreversible bilinear cohesive law (see Fig. 4) with loading and unloading 
was employed [16, 17]. The cohesive law is defined in terms of a non-dimensional effective 
displacement and effective traction 
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respectively; in which n)  and s)  are normal and tangential displacement jumps at the interface 
estimated by the finite element analysis; c

n)  and c
s)  are critical values at which interface failure 

takes place; nt  and st  are the normal and tangential tractions, respectively. 
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Fig. 4. Bilinear cohesive model with loading and unloading 

It is assumed that the traction across the interface increases linearly to its maximum value c�
which corresponds to a displacement crt* . In this stage, the stress is linked to relative displacement 
via interface stiffness. Beyond crt* , the traction reduce to zero for 1�* .

For crt0 *+*, , the shear and normal tractions are defined by 
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For 1crt ,*,* , the tractions across the interface are defined by
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The unloading behavior in the hardening region follows the same slope as the loading path (see 
Fig. 4). Reloading follows hardening slope and then continues along the softening slope. In the 
softening region, unloading is assumed to follow a different linear path back from the current 
position to the origin. 

Numerical example 
To study the capability of the discontinuous Galerkin method to predict the softening response of a 
structure given its fracture properties, a single-edge notched beam (SNB) was considered with 
unstructured mesh. The geometry, the boundary conditions and the mesh used in the study are 
shown in Fig. 5. 
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The mesh consists of 127 three-noded triangle elements, 380 nodes, and 380 boundaries, 
respectively. For the analysis, the following materials properties are used: Young’s modulus 

4105.3E �� MPa, Poisson’s ration -=0.15, tensile strength c� =3 MPa, fracture energy 1.0Gc �
Nmm-1.

10P/11
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440 mm

10
0 

m
m

Fig. 5. Geometry, boundaries conditions, and mesh of SEN beam 

The discontinuous Galerkin formulation presented above has been implemented using object-
oriented programming in C++. The cohesive model can be easily implemented in the discontinuous 
finite element framework. Within the present formulation, once a crack nucleates along an edge, i.e. 
the effective traction t , Eq. (17), at each integration point in the elastic region reaches its maximum 
value c� , a cohesive interface is activated, and the relationship between the crack opening 
displacements and the tractions is governed by Eqs. (18) and (19), respectively. If parameter *  is 
equal to 1, a crack is introduced along the inter-element boundaries. 

The analysis was done considering Gauss integration scheme. For the boundary located at the 
interface 3-point Gauss integration scheme was used (see gray triangles in Fig. 5) while for the rest 
of elements 2-point Gauss integration scheme was employed.  
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Fig. 6. Load-displacement response for the SEN beam 

The predicted crack path is shown in Fig. 5 (the thicker line), while the load-displacement 
response for the simulation is presented in Fig. 6. The simulation was stop before the complete 
fracture of the specimen. Although a relative coarse mesh was used, a good convergence was met 
for every load increment. 
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Summary
In this paper, a new computational approach based on discontinuous Galerkin method and cohesive 
zone models to study interface fracture phenomena has been presented and illustrated for a single-
edge notched beam. The discontinuous Galerkin method can handle cohesive cracks very naturally 
with some advantages over the other methods, including good stability and consistency, absence of 
traction oscillations and spurious reflections. Compared to conventional cohesive elements, the 
discontinuous Galerkin method has the advantage of allowing crack formation without insertion of 
cohesive elements during the simulation. 

One of the downsides of the discontinuous Galerkin methods is the computational cost since a 
loop over the boundaries in the mesh in necessary. Also, an important yet unresolved problem is the 
automatic selection of the stabilization parameter. However, the proposed discontinuous Galerkin 
finite element formulation with cohesive models can simplify the computational modeling of failure 
along interfaces. 
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