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Abstract. The fracture toughness of a ductile material may be measured as a point value, or as a 
complete fracture toughness resistance curve, as per ASTM Standard Method E 1820. In the latter 
option, a J-based resistance curve � the J-R curve � is obtained from a single specimen fracture 
test, in which the actual crack length may be measured from elastic compliance changes.  
Donoso, Zahr and Landes proposed an alternative method of construction of the J-R curve that 
makes use of a postulated crack growth law relating stable crack extension, Δa, to plastic 
displacement, vpl. In this method, an analytical treatment of both the J-Δa curve and the force-
displacement, P-v, curve, is possible even when the only inputs are the P-v curve and the initial and 
final crack length values; that is, when no crack extension measurements concurrent with the 
fracture test are available.  

Based upon the crack growth law concept, and on the Common and the Concise Format 
Equations developed by Donoso and Landes, two alternative ways of generating values of crack size 
along the P-v curve are presented. These methods, designated as the “intercept” method, and the 
“corrected force” method, are examined by using known crack extension data obtained by the 
unloading compliance technique on a C(T) fracture specimen. The role of the maximum load on the 
crack growth law is emphasized, in the light of the relations obtained from an instability analysis of 
the P-v curve for a ductile material that undergoes stable crack extension. P-v curves obtained with 
these methods of crack extension evaluation are compared with those experimentally obtained from 
a C(T) fracture test specimen. The results are encouraging, and suggest that the method could be 
applied to cases in which there are only measured initial and measured final crack sizes available.  

Introduction 

The construction of a J-R curve for a ductile material requires consideration of the stable crack 
extension process, and the appropriate correction for the incremental crack growth that ensues. 
According to Standard ASTM E1820 [1], the J-R curve is obtained from a single specimen test, in 
which the actual crack length is measured concurrently by the unloading compliance method, or 
other similar techniques, including the normalization method of Appendix A15 of Standard E1820.  

Donoso, Zahr and Landes (DZL) proposed an alternative method of construction of the J-R curve 
by postulating a crack growth law that relates the measured stable crack extension, Δa, to the plastic 
component of the displacement, vpl [2]. The original method allowed for an analytical treatment of 
both the J-Δa and the force-displacement (P-v) curves, when the sole inputs were the experimental 
P-v curve and the measured initial and measured final crack sizes, ao and af. Thus, the DZL method 
made it possible to generate crack size values as a function of force and displacement, even when no 
crack extension measurements made simultaneously with the fracture test were available.  

In this work, the instability analysis that constitutes the foundation of the method outlined above 
will be reviewed. Of paramount significance is the existence of a maximum force on the force-
displacement plot for a specimen that displays stable crack extension. In fact, the amount of stable 
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crack growth is of relatively little importance before the force attains its maximum value; in other 
words, most of the crack extension that develops during the test up to Δamax – a quantity defined in 
Standard E1820 [1] – occurs for displacements larger than that at which maximum force is attained. 

Two methods for evaluating the crack size at any point along the P-v curve beyond maximum 
force will be presented. The first is based upon the intercept of the actual P-v curve with curves with 
constant crack size constructed with the Common and Concise (C&C) Format Equations. The 
second is a C&C improved version of the normalization technique included in Standard E1820. The 
results obtained with these methods are compared to crack extension values measured by unloading 
compliance on a 1T-C(T) specimen, and related to those obtained from the maximum force solution 
based upon the instability condition of a fracture specimen that undergoes stable crack extension .  

The P-v curve and the instability criterion 

A fracture toughness test of a ductile material, in which there is stable crack growth, is carried 
normally to a displacement beyond that at which maximum force is attained. In Figure 1, three 
schematic P-v curves have been drawn for a C(T) specimen. The first curve, labeled as“1” or “a 
variable”, represents the behavior of a specimen that has initial crack size ao, shows stable crack 
extension, and for which maximum force Pmax is attained at the total displacement value vc. The test 
is finished at a point on the curve labeled as “vf, Pf, af”, meaning that displacement and force at the 
test final point are (vf, Pf), and the final crack size is af. The total stable crack extension at the end of 
the fracture test is Δa = af – ao.  
 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.- Schematic force-displacement curves for variable and constant crack size. 

A second curve, designated as “2” or “a constant, aj > ao”, intersects the “a variable” curve at 
point Q, which has a displacement v*. This curve shows the behavior of a blunt-notch specimen 
with an initial crack size aj, intermediate between initial and final crack sizes (i.e., af  > aj > ao), and 
for which there is no crack growth. In this case, the force always increases, and the displacements 
may be calculated from the Common Format Equation [3] for the plastic component, and from the 
Concise Format [4] for the elastic part. The first method for the evaluation of crack size to be shown 
presently, the so-called “intercept” method, is based on constructing curves of the “a constant” type, 
like curve “2” of Figure 1, and has been introduced earlier as a powerful tool in the construction of 
J-R curves for C(T) specimens in which the variation of crack size during the test is not known [5]. 
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The third curve in Figure 1 stems from the “a variable” curve, and is labeled “3” or “a constant, 
aj = ao”. It represents the behavior the original specimen with initial crack size ao would have if the 
crack did not grow during the test; that is, much like curve “2”, curve “3” represents the behavior of 
a blunt-notch specimen with initial crack size ao. The second method for the calculation of crack 
sizes, designated as the “corrected force” method, is based on the construction of this single curve 
of the “a constant” type, with crack size aj = ao. 

Both the “intercept” as well as the “corrected force” methods rely heavily upon the Common 
Format Equation, CFE, proposed by Donoso and Landes [3] to describe the force-plastic 
displacement relationship for a blunt-notch fracture specimen. The CFE relates the applied force P 
with two variables representing the non-linear deformation of a fracture specimen that has a 
stationary crack: vpl/W, the normalized plastic component of the force-line displacement, and b/W, 
the normalized ligament size (ligament size b in lieu of the crack size a). The CFE also includes a 
term that takes into account the out-of-plane constraint, Ω*, and is written as: 

 
P = Ω*⋅B⋅C⋅W⋅(b/W)m ⋅σ*⋅(vpl/W) 1/n .                          (1) 

 

where B is the specimen thickness; C and m are the geometry function parameters, and σ* and n are 
material properties, obtained from normalized force-normalized displacement data [5, 6]. 

For a blunt-notch specimen, the crack size is constant, and v and P become the variables of the 
calibration function, at constant crack size. When the specimen has a sharp crack, however, and the 
deformation is accompanied by stable crack extension, the crack size a also becomes a variable, so 
that a separate relation between a and vpl is needed. For such purpose, Donoso, Zahr and Landes 
proposed a “crack growth law” [2] to account for the relation between stable crack extension Δa, 
and plastic displacement vpl. The assumed crack growth law is a two-parameter power law equation 
relating the change in normalized crack size, Δa/W, with normalized plastic displacement, vpl/W:  
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In Eq. (2), lo is a coefficient to be determined by calibration with the final point data (vf, Pf, af) 

and l1 an exponent, which for C(T) specimens is of the order of 2.0 [2].  
The crack extension may also be written in terms of the change in ligament size, i.e., Δa = bo – b, 

where bo is the initial ligament size (bo is equal to W minus the initial crack size, ao). Thus, Eq. (2) 
gives the following expression for the current ligament size, b: 
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Substitution of Eqs. (2) and (3) into Eq (1) yield the following expression for the CFE in terms of 

only the plastic displacement: 
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Equation (4) is the relation for the force vs. plastic displacement curve of the DZL model when 

there is stable crack growth, in which D is the product of the parameters σ* and Ω*. The format of 
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Eq. (4) clearly suggests the existence of a maximum value for P in terms of plastic displacement. 
Following the guidelines of ASTM E1820 [1], the fracture toughness test data will often be given as 
load vs. total displacement. Also, as a complement to the P-v data, the stable crack extension values 
are presented as a function of total displacement. The alternative look at the J-R curve construction 
proposed by DZL includes the crack growth law, Eq. (2), and the relation between force and plastic 
displacement for a crack growth situation, Eq. (4). Equations (2) and (4) relate crack extension Δa, 
and force P, respectively, to the plastic component of the displacement; the elastic displacement, on 
the other hand, may be obtained with the use of the Concise Format [4]. 

The value of the maximum force, that is, the condition for instability when there is stable crack 
extension, is obtained by differentiating Eq. (4) with respect to plastic displacement, then solving 
for dP/dvpl = 0. With Eqs. (2) and (3), the solution for the normalized critical crack size, ac/W, is 
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Alternatively, the solution for the critical ligament size, bc/W, is 
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Equations (5) and (6) suggest a relevant truth: when in a fracture test of a ductile material the 

specimen undergoes stable crack extension, at the point the force reaches its maximum value, the 
crack size has increased from the initial value ao to ac, given by Eq. (5). Conversely, the ratio of the 
ligaments, bc / bo (i.e., critical to initial ligament size), is given by Eq. (6); that is, by the expression 
mnl1 /(1+mnl1). For a 1-T C(T) specimen of a material that has ideally n = 6.0, and l1 = 2.0, the ratio 
bc/bo = 0.964, which means that, when P = Pmax, the current ligament size is 3.6% smaller than the 
initial ligament size. If ao/W = 0.6, and W = 50 mm, then the value of the stable crack extension at 
maximum force, Δac = bo – bc, would be of the order of 0.72 mm. 

The assessment of instability, on the other hand, requires evaluating both the maximum force and 
the critical plastic displacement. Substitution of Eq. (6) into Eq. (3) gives, for the critical plastic 
displacement: 
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The value of the maximum force, Pmax, is then obtained by substitution of Eq. (7) into Eq. (4):  
 

�
	



�
�


�
	



�
�


+�

	



�
�


+

�
�

�
�
�

�=
+

lmnllmn
lmn

W
b

DBCWP
o

lnm
o

lnm

1

/1

1

1
)/1(

max 1

11

1

11

.                        (8) 

 
Equation (8), a solution for the maximum force obtained from instability considerations when 

there is stable crack growth, depends on the material properties (D, n); on the specimen geometry 
(C, m); on the constraint (Ω*, included in the term D), on specimen size (B, W), on the initial 
ligament size (bo), and on the crack growth law parameters (lo, l1). Eq. (8) may either serve to 
predict the value of Pmax, or better yet, to obtain the value of the parameter lo, with l1 known, as 
explained in earlier works [2]. This latter option will be presented here. 
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The intercept method 

In order to present both crack size evaluation methods, the force-displacement data from a ASTM A 
533B 1-T C(T) specimen tested at room temperature (CT-10) will be used [7], which has been 
characterized by D = 335 MPa and n = 5.38 [6]. Fig. 2(a) (left side) shows the experimental P-v 
curve for the C(T) specimen for which there is stable crack extension. Three “a constant” curves are 
shown: the uppermost curve corresponds to a = ao (30.22 mm); the lower one, to a = af (34.17 
mm), and the intermediate curve (a = a1) corresponds to the crack size at one of the experimental 
points, at a total displacement v of 1.9 mm.  

In Fig. 2(b), the experimental, the C&C(ao), and the C&C(af) curves have been drawn, together 
with six “a constant” curves. These six “a constant” type curves are characterized by the fact that 
their crack sizes are equally spaced between ao and af. Thus, for example, the curve denoted 
C&C(a3), has a crack size a3 = 32.2 mm, and crosses the experimental curve at v � 2.4 mm. The 
intercepts of these six curves with the experimental curve have been evaluated, and will be shown 
presently in a plot of crack size vs. total displacement. 

 

  

Figure 2.- P-v plots of the A 533B 1-T C(T) specimen with ao/W = 0.6. On the left, the experimental 
curve with three a constant curves; on the right, six intercept a constant curves. 

The corrected force method 

Figure 3 shows normalized P-v plots for the A 533B specimen. The abscissa in Figs. 3(a)/(b) shows 
the normalized displacement, v/W, whereas the ordinate shows the normalized force, Pn, obtained by 
dividing P by the geometry function of the CFE, G(b). The geometry function G corresponds to that 
part of Eq. (1) in between the constraint term Ω* and the deformation function, and is defined as: 

G = B�C�W�(b/W)m.  (9) 

The experimental P-v data, for which the force has been normalized by the function designated 
as “G(bo)”, with G(bo) = B�C�W�(bo/W)m, displays the corresponding maximum in normalized force, 
shown by the solid arrow in Fig. 3(a). In this case, bo is the initial ligament size. On the other hand, 
if the force is normalized by the geometry function “G(bj)”, where bj is the actual ligament size that 
changes from bo to bf = W – af, the resulting curve continuously rises as shown by the solid line. 

(a) (b) 
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Figure 3.- Normalized P-v data to show the corrected force method. 

The third curve shown on Fig. 3(a), labelled “C&C(bo)”, is the same C&C(ao) curve of Fig. 2, 
constructed with the C&C Formats for the initial ligament size, and normalized with the function 
G(bo). The graphic evidence shows that the curve obtained by normalizing the experimental force 
data by G(bj), is absolutely coincident with the C&C(bo) curve, normalized with G(bo). Fig. 3(a) also 
includes the “final point”, which is coincident with the last point of the C&C(bo) curve. This point is 
the same point with coordinates (vf, Pf) and final crack size af in Fig. 1, but it has been corrected by 
the force ratio of the G(bo) and the G(bj) curves, at the same displacement vf, as will be shown. 

This fact is used in Fig. 3(b), with only the normalized experimental curve, G(bo), and the 
normalized C&C curve for the initial ligament size, C&C(bo), instead of the G(bj) curve. This 
relation is shown in Fig. 3(b) by the segmented arrow pointing from the C&C(bo) curve towards the 
experimental one (A-A’), for the final point. For any point B with displacement vc < vj < vf (see Fig. 
1), and ligament bo > bj > bf, a counterpart B’ exists such that the experimental value of P, Pxp, 
normalized by G(bj), should be equal to the CFE value of the force, PC&C, normalized by G(bo), i.e.: 

PC&C/(bo/W)m = Pxp/(bj/W)m.  (10) 

The solution for the unknown value of the ligament, bj, at point B’ is, thus: 

bj = bo(Pxp/PC&C)1/m.  (11) 

The overall results of calculating the “unknown” crack sizes with the intercept and the corrected 
force methods are shown in Fig. 4(a), in the format of crack size vs. total displacement, and in Fig. 
4(b), with the variables of the crack growth law only, Eq. (2), i.e., Δa/W and vpl/W. The a-v plot of 
Fig. 4(a) shows the original experimental points (continuous line), the results obtained with the 
intercept method (o), shown on Fig. 2, and those obtained by the corrected force method (�), for 
random displacements coincident with those of the experimental data.  

The arrow on Fig. 4(a) marks the experimental point at which P = Pmax. The results obtained 
with both methods, being aware of the fact that the crack sizes are known point-by-point along the 
experimental P-v curve, are certainly good and encouraging. Earlier results obtained for this 
specimen used a calibration method with the final point, and l1 = 2.0, giving for the coefficient of 
the crack growth law lo = 22.36 [2]. Table 1 shows a comparison of the parameters of the crack 
growth law for our four modes of calculation, including those obtained from maximum force. 

(a) (b) 

A 

A’ 

B 

B’ 
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Figure 4.- Results of the intercept and corrected force methods, shown against experimental data 
(left). On the right, the crack growth law plot for the intercept and corrected force methods. 

 

Method lo l1 

Intercept 24.09 1.996 

Corrected force 22.74 1.976 

Maximum force, Eq. (8) 23.41 2.0 

Calibration (final point) 22.36  2.0 

Mean values 23.15 1.993 

Table 1.- Crack growth law parameters for various methods. 

 
In Table 1, the third method refers to solving for lo from Eq. (8), which shows Pmax as a function 

of several parameters. As explained earlier, Equation (8) is the solution for maximum force obtained 
from instability considerations when there is stable crack growth. As such, it depends on material 
properties and constraint, specimen geometry, specimen size, initial ligament size, and on the crack 
growth law parameters lo, l1. Solving for lo requires knowledge of all these parameters [2, 5], and 
this includes l1. Thus, the maximum force solution shown in Table 1 implies using l1 = 2.0.  

The last line of Table 1 has been included in order to show the similarity between the results for 
the crack growth law parameters obtained by the various methods. Without resorting to a statistical 
analysis, one might venture that the “best” solution is given by the maximum force relation, Eq. (8). 
This would be quite convenient were it not for the fact that l1 is not always close to 2.0 [5]. In fact, 
for some C(T) specimens, the exponent l1 has been found to be of the order of 1.5, and in cases even 
closer to unity [7], which may rule out this method as a “universal” method. 

Figure 5 shows a comparison between the corrected force, the intercept, and the maximum force 
methods. Based upon the crack growth law of Eq. (2), and the CFE, Eq. (4), the P-v data have been 
re-calculated and plotted against the experimental points. The crack growth law parameters of Table 
1 have been used to calculate the current value of the crack size along the P-v curve, as explained 
elsewhere [2, 5]. It seems apparent that the three methods yield most encouraging results, taking 
into account the fact that the model produces a smooth curve, as compared to the experimental set 
of data. If l1 � 2.0, the intercept method should be a first choice to evaluate crack extension in a test 
for which it is difficult or impossible to have concurrent measurements of crack size available. 

(a) (b) 

Pmax 
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Figure 5.- DZL model curves constructed with the crack growth law parameters obtained from 
maximum force and corrected force (left) and maximum force and intercept methods (right). 

Concluding Remarks 

Two ways of evaluating the crack size in a test for which there are no measurements available, have 
been introduced: the intercept and the corrected force methods. The crack growth law parameters of 
a C(T) specimen of known crack extension values were evaluated with these methods, comparing 
well with those given by calibration with the final experimental point, and with the solution given 
by the maximum force, obtained from an instability analysis. The intercept method appears to be the 
least dependent on the progress of crack extension, as opposed to the maximum force solution, 
which requires l1 = 2.0, a value which might well be a material-dependent variable.   
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