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Abstract. Failure of quasibrittle materials such as concrete is characterized by gradual transition
from diffuse microcracking to a localized damage process zone and finally to a macroscopic crack.
Diffuse damage and its localization into a narrow band of a nonzero thickness are properly described
by regularized constitutive models with softening, e.g. by integral-type nonlocal damage models. In
this paper, a new nonlocal formulation of the isotropic damage model is proposed, with the damage-
driving internal variable dependent on both the local and nonlocal equivalent strain. Localization
properties of this model are studied analytically and numerically. It is shown that the localized process
zone has initially a certain thickness controled by the nonlocal interaction radius, but later it shrinks
and approaches zero thickness. The damage variable grows to 1 only in a very narrow band, which
is an improvement over the standard formulation that leads to unrealistically wide bands of fully
damaged material. For this reason, the new formulation is more appropriate for the description of
transition to a localized crack.

Introduction

Realistic description of the mechanical behavior of quasibrittle materials such as concrete requires
constitutive laws with softening. The physical origin of softening is in the propagation and coales-
cence of defects such as voids or cracks. It is well known that softening may lead to localization
of inelastic strain into narrow process zones. For traditional models formulated within the classical
framework of continuum mechanics, such zones have an arbitrarily small thickness, and failure can
occur at arbitrarily small energy dissipation, which is not realistic. The boundary value problem be-
comes ill-posed and the numerical solutions suffer by pathological sensitivity to the discretization
parameter, e.g. to the size of finite elements. To restore well-posedness, special enhancements acting
as localization limiters must be used.
A wide class of efficient localization limiters is based on the concept of a nonlocal continuum.

One popular nonlocal damage model uses the weighted spatial average of the equivalent strain as the
damage-driving variable. The purpose of this paper is to propose a more general formulation and
investigate its localization properties.

Local isotropic damage model

In this paper, we consider the class of isotropic damage models with one scalar damage variable ω,
described by the stress-strain law

σ = (1− ω)De : ε (1)

damage law

ω = g(κ) (2)
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and loading-unloading conditions

f(ε, κ) ≡ εeq(ε)− κ ≤ 0, κ̇ ≥ 0, f(ε, κ) κ̇ = 0 (3)

in which f is the damage loading function, g is the damage evolution function, εeq is a scalar measure
of the strain level called the equivalent strain, and κ is an internal variable that corresponds to the
maximum level of equivalent strain ever reached in the previous history of the material. The choice
of the specific expression for the equivalent strain directly affects the shape of the elastic domain in
the strain space, therefore it plays a role similar to the yield function in plasticity, which defines the
yield surface in the stress space.
The shape of the stress-strain diagram is controled by the damage law (2). For instance, a model

with linear elastic behavior up to the peak stress, followed by an exponential softening, is obtained
with the following specific form of the damage law:

ω = g(κ) = 1−
ε0

κ
exp

(
−
〈κ− ε0〉

εf − ε0

)
(4)

Here, ε0 is the limit elastic strain, εf is a parameter that controls the steepness of the softening branch
and thus the density of dissipated energy, and the Macauley brackets 〈. . .〉 denote the positive part,
i.e., 〈x〉 = x for x > 0 and 〈x〉 = 0 otherwise.
From the rate form of the basic equations it is easy to derive the (elastic-damaged) tangent stiffness

tensor

Ded = (1− ω)De − g′σ̄ ⊗ η (5)

Here, (1−ω)De is the unloading stiffness, g′ = dg/dκ is the derivative of the damage function g, σ̄ =
De : ε is the effective stress, and η = ∂εeq/∂ε is a second order tensor obtained by differentiation
of the expression for equivalent strain with respect to the strain tensor. It is well known that if the
corresponding localization tensor

Qed = n ·Ded · n = (1− ω)Qe − g′(n · σ̄)⊗ (η · n) (6)

becomes singular for a certain direction characterized by a unit vector n, then a weak discontinuity
may develop across a plane perpendicular to n. From the mathematical point of view, this corre-
ponds to the loss of ellipticity of the differential equation governing the deformable body, and the
corresponding boundary value problem becomes ill-posed.

Damage model with nonlocal equivalent strain

A remedy to the problems mentioned at the end of the previous section is often sought in enriched
formulations that serve as localization limiters. Typical examples include higher-order continua or
integral-type nonlocal formulations [1]. One efficient and widely popular localization limiter is based
on weighted spatial averaging of the equivalent strain. In the definition of the loading function,
the local equivalent strain εeq evaluated at the given point is replaced by its nonlocal counterpart
εeq, evaluated as a weighted average over a certain neighborhood of that point. Mathematically, the
nonlocal equivalent strain at point x is defined as

εeq(x) =
∫

V
α(x, ξ)εeq(ε(ξ)) dξ (7)

where α(x, ξ) is a given nonlocal weight function. In an infinite body, the weight function depends
only on the distance between the “source” point, ξ, and the “receiver” point, x. In the vicinity of
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a boundary, the weight function is usually rescaled such that the nonlocal operator does not alter a
uniform field. This can be achieved by setting

α(x, ξ) =
α0(‖x− ξ‖)∫

V α0(‖x− ζ‖) dζ
(8)

where α0(r) is a monotonically decreasing nonnegative function of the distance r = ‖x− ξ‖. In the
one-dimensional setting, x and ξ are scalars and the domain of integration V reduces to an interval.
The weight function is often taken as the Gauss distribution function α0(r) = exp (−r2/2�2)

where � is a parameter reflecting the internal length of the nonlocal continuum. Another possible
choice, adopted in the present study, is the truncated quartic polynomial function

α0(r) =

〈
1−

r2

R2

〉2

(9)

where R is a parameter related to the internal length. Since R corresponds to the largest distance
of point ξ that affects the nonlocal average at point x, it is called the interaction radius. The Gauss
function has an unbounded support, i.e., its interaction radius is infinite.
According to the modified loading-unloading conditions

εeq − κ ≤ 0, κ̇ ≥ 0, (εeq − κ) κ̇ = 0 (10)

the internal variable κ has the meaning of the largest previously reached value of nonlocal equivalent
strain εeq. The corresponding damage variable evaluated from (2) is then substituted into the stress-
strain equations (1). It is important to note that the damage variable is evaluated from the nonlocal
equivalent strain εeq, but the strain ε that appears in (1) explicitly is kept local. In the elastic range,
the damage variable remains equal to zero, and the stress-strain relation is local.

Damage model with combination of local and nonlocal equivalent strains

As a new development, we propose a new type of nonlocal damage model, with damage driven by
a combination of the local and nonlocal values of equivalent strain. In a first attempt, we consider a
weighted arithmetic average of εeq and εeq. The loading function is written as

f(εeq, εeq, κ) = βεeq + (1− β)εeq − κ (11)

where β is a dimensionless model parameter. This new formulation is inspired by the so-called
over-nonlocal plasticity model [4, 3], which deals with a similar linear combination of the local and
nonlocal cumulative plastic strains. It covers, as special cases, the local model (3) with β = 0 and the
standard nonlocal model (10) with β = 1.

One-dimensional localization analysis

To shed more light on the regularizing effect of the nonlocal term and on the role of parameter β,
we will perform a simple one-dimensional analysis of bifurcations from a uniform state under uni-
axial tension. This is just an academic example, but it is instructive because it can be solved semi-
analytically and the results indicate which parameters influence the size of the localized zone.
We consider a perfectly homogeneous bar with constant cross section, subjected to increasing total

elongation. No body or inertia forces are taken into account, and so the stress state is uniform. The
problem always admits a solution with uniform strain. The main questions to be addressed here are (i)
under which conditions the strain distribution can become nonuniform and (ii) how such nonuniform
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solutions look like. We analyze the state at incipient loss of strain uniformity, when the current strain
is still uniform but the strain rate is not.
The rate form of the stress-strain law (1) reduced to one spatial dimension and combined with the

rate form of the damage law (2) reads

σ̇ = (1− ω)Eε̇− Eεω̇ = Euε̇− Eεg′κ̇ (12)

where Eu = (1 − ω)E is the unloading (secant) modulus and g′ = dg/dκ is the derivative of the
damage function g.
Consider first the local damage model. Up to the current state, the material has experienced no

unloading and there is no difference between the damage-driving variable κ and the longitudinal
strain ε. But the rate κ̇ is equal to the strain rate ε̇ only if the strain keeps growing, otherwise we
have κ̇ = 0. Both cases are covered by the relation κ̇ = 〈ε̇〉. In the damage zone, characterized by
ε̇ > 0, expression (12) for the stress rate can be written as σ̇ = Eedε̇ where Eed = Eu − Eεg′ is the
elasto-damage (tangent) modulus. Replacing −Eεg′ by Eed − Eu, we can rewrite (12) as

σ̇ = Euε̇ + (Eed − Eu)κ̇ (13)

Let us now turn attention to the nonlocal model. For the formulation presented in the preceding
section, damage is driven by the linear combination of local and nonlocal equivalent strains, and the
rate of the internal variable κ at the onset of localization can be expressed as κ̇ = 〈β ˙̄ε + (1 − β)ε̇〉.
Relation (13) written for the entire bar provides an equation that governs the distribution of the strain
rate. This equation, in general written as

Euε̇(x) + (Eed − Eu)〈β ˙̄ε(x) + (1− β)ε̇(x)〉 = σ̇ (14)

has an integral character. Note that the current values of the moduliEu and Eed are taken as constants
because at the onset of localization the current state is still uniform, and that the stress rate σ̇ is also
independent of the spatial coordinate—its uniformity follows from the equilibrium equation. De-
pending on the sign of the stress rate and of the tangent modulus, equation (14) has uniform solutions
ε̇(x) = σ̇/Eed > 0 or ε̇(x) = σ̇/Eu < 0 that correspond to uniform damage growth or to uniform
elastic unloading, respectively. We will now look for possible nonuniform solutions.
For a given ratio Eed/Eu, the exact width and shape of the strain rate profile can be found nu-

merically. This will later be done by the finite element method, but it is instructive to start from a
theoretical analysis and try to solve equation (14) directly, with σ̇ considered as a given (negative)
constant. The most interesting solution is that for which the growth of damage localizes into an in-
terval Id of finite length Ld, surrounded by elastically unloading material with constant damage. The
origin of the coordinate system will be placed in the center of the localized damage zone, which
means that Id will be considered as the interval (−Ld/2, Ld/2).
For simplicity, we assume that the total bar length L is sufficiently large, so that Id is contained

in the interval (−L/2, L/2) representing the entire bar. Outside Id, the rate of the loading function is
nonpositive and (14) reduces to Euε̇(x) = σ̇, from which ε̇(x) = σ̇/Eu for all x /∈ Id. It is convenient
to introduce a new unknown function ė(x) = ε̇(x) − σ̇/Eu (which is nonvanishing only in Id) and
rewrite (14) as(

β +
Eed

Eu −Eed

)
ė(x)− β ˙̄e(x) =

σ̇

Eu

for x ∈ Id (15)

Physically, ė can be considered as the damage strain rate or inelastic strain rate, because the rate form
of the stress-strain law can be presented as σ̇ = Eu(ε̇− ė).
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Since ė(x) vanishes outside the interval Id = (−Ld/2, Ld/2), the nonlocal term can be expressed
by an integral over Id and (15) can be presented as(

β +
Eed

Eu −Eed

)
ė(x)− β

∫ Ld/2

−Ld/2
α(x, ξ)ė(ξ)dξ =

σ̇

Eu

for − Ld/2 ≤ x ≤ Ld/2 (16)

This is a Fredholm integral equation of the second kind with a constant right-hand side. The nonstan-
dard feature is that the interval Id on which (16) is to be solved is not known in advance—it must be
found from the loading-unloading conditions, which require that Id = {x | β ˙̄ε(x)+(1−β)ε̇(x) > 0},
i.e., in terms of the new unknown function, that Id = {x | β ˙̄e(x) + (1− β)ė(x) > −σ̇/Eu}.
A problem having the same mathematical structure was analyzed in detail in [2]. The general

results derived in that paper can be applied to the present case. It was shown that if the coefficient
multiplying the local term is positive, the local rate ė(x) remains continuous (not only inside the
interval Id but everywhere), which means that its value at the boundary of Id is zero. This is the
condition from which the actual size of the damage zone Ld can be determined. Furthermore, a
localized solution (i.e. a solution for which Id does not extend over the entire bar) exists only if (i) the
right-hand side of (16) is nonpositive and (ii) the sum of the coefficients multiplying the local term
and the nonlocal one is also nonpositive. The sign of the right-hand side depends on the stress rate,
because Eu is always positive. Therefore, localization may occur only at non-increasing stress. The
second condition leads to Eed/(Eu −Eed) ≤ 0, which is equivalent to Eed ≤ 0. Thus, for the present
one-dimensional model, the onset of localization coincides with the onset of softening. The localized
solution is continuous if

β +
Eed

Eu −Eed

> 0 (17)

Condition (17) can be rewritten in terms of the ratio between the tangent and unloading moduli. For
β < 1 we obtain

Eed

Eu

> −
β

1− β
(18)

while for β ≥ 1 the condition is always satisfied. So we conclude that the standard nonlocal model
with β = 1 and the “over-nonlocal” model with β > 1 lead to solutions with the strain localized but
still continuous, while the “under-nonlocal” model with β < 1 can lead to localized solutions with
discontinuities in strain, provided that the ratio between the tangent and unloadingmoduli drops below
a certain negative critical value. The critical ratio Eed/Eu depends on β and for β approaching 1 it
tends to minus infinity while for β approaching zero it tends to zero from below. Models with small β
are “lightly regularized” and preserve continuity of strain only for very mild softening. Models with
larger β are “moderately regularized” and develop a strain discontinuity only for dramatic softening.
Models with β ≥ 1 are “fully regularized” and the strain profile remains continuous even for dramatic
softening.

Evolution of the strain profile

The actual value of the ratio between the tangent and unloading moduli depends on the shape of
the stress-strain diagram and on the strain level. In the elastic range, this ratio is 1, and it becomes
negative after the peak of the stress-strain diagram. In the pre-peak range, no bifurcation is possible
and the solution remains uniform. For stress-strain curves with a sharp peak, e.g. those described by
the damage law (4), the slope at peak is right away negative and a bifurcation occurs. The localized
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Figure 1: (a) Load-displacement diagrams for three different nonlocal models, (b) evolution of the
strain profile for model with loading function (11).

solution remains continuous if the softening is not too dramatic. In terms of the damage function g
and its derivative g′, the ratio between the tangent and unloading moduli can be expressed as

Eed

Eu

=
(1− g)E − Eεg′

(1− g)E
= 1−

εg′

1− g
(19)

For the damage law (4) we get

g′(ε) =
(

ε0

ε2
+

ε0

ε

1

εf − ε0

)
exp

(
−
〈ε− ε0〉

εf − ε0

)
(20)

Eed

Eu

= 1−
εg′(ε)

1− g(ε)
= 1−

(
1 +

ε

εf − ε0

)
= −

ε

εf − ε0

(21)

The above relations are valid for ε ≥ ε0. Right at peak, we have ε = ε0 and Eed/Eu = −ε0/(εf−ε0).
Condition (18) is satisfied if εf > ε0/β. So the initial localized strain distribution remains continuous
if the ratio εf/ε0 that controls the relative steepness of the softening branch of the stress-strain diagram
exceeds the inverse value of parameter β. But it is interesting to note that, with increasing ε, the ratio
Eed/Eu evaluated according to (21) tends to minus infinity. Consequently, condition (18) is always
violated if the test proceeds far enough.
Strictly speaking, condition (18) refers only to a bifurcation from a uniform state, so it would be

applicable only if the strain distribution was artificially held uniform up to the current state. Then,
for strains exceeding (εf − ε0)β/(1− β), a discontinuous bifurcation could take place. Intuitively it
can be expected that if the strain is not kept uniform, the localized profile with a continuous strain
distribution will evolve towards a discontinuity. However, the actual model response needs to be
verified by numerical simulations.
All simulations are performed using a one-dimensional model of a bar of length L = 8 discretized

by finite elements of minimum size 0.0125. Localization is triggered by reducing the cross-sectional
area of one element by 0.1%. The bar is loaded by monotonically increasing applied displacement
at its right end while the left end is kept fixed. All quantities plotted in the graphs are normalized:
the displacement and force are divided by their peak values, the strains are divided by the strain at
peak stress, etc. An exponential damage law (4) with εf = 10 ε0 is adopted. The nonlocal interaction
radius is initially set to R = 1.
The solid curve in Fig. 1a represents the load-displacement diagram for the standard nonlocal

model with β = 1 and R = 1. The dashed curve corresponds to the new model with β = 0.5 and
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Figure 2: Nonlocal model with loading function (22) and parameter β = 0.5: evolution of strain
profile at (a) early and (b) late stages of softening.

R = 1.5. The interaction radius is increased to compensate for the effect of β on the size of the
damage zone. With parameters β = 0.5 and R = 1.5, the initial part of the softening curve remains
almost the same as for the standard nonlocal model. However, when the applied displacement exceeds
approximately 1.6 times the displacement at peak, the stress transmitted by the bar suddenly drops to
zero and the bar fails. This sudden failure is related to an abrupt localization of strain increments into
one single element; see Fig. 1b. So the initial version of the new model suffers by a serious deficiency.
The pathological behavior is eliminated if the damage-driving quantity is redefined as the har-

monic average of the local and nonlocal equivalent strain instead of the arithmetic average. Equation
(11) is reformulated as

f(εeq, εeq, κ) =
(
βε−1

eq + (1− β)ε−1
eq

)
−1
− κ (22)

After this modification, the load-displacement diagram becomes continuous and turns out to be very
close to the original one; see the dotted curve in Fig. 1a. The strain profile is continuous during the
initial stages of localization (Fig. 2a) but later the strain increments concentrate in a small part of the
damage zone between two weak discontinuities (Fig. 2b). Note the different scales on the axes in
Figs. 2a and 2b. At late stages of softening, the active part of the damage zone is very small and the
solution tends to a localized crack. The evolution of the damage-driving variable κ is documented in
Fig. 3a, and the final damage distribution is plotted in Fig. 3b. The dotted curve in Fig. 3b corresponds
to the standard nonlocal model, for which the damage variable always tends to 1 in an interval of size
2R. This deficiency is alleviated by the newly proposed formulation.
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[2] M. Jirásek and P. Grassl. Nonlocal plasticity models for brittle materials. In P. A. Vermeer et al.,
editor, Continuous and Discontinuous Modelling of Cohesive-Frictional Materials, Berlin and
Heidelberg, 2004. Springer-Verlag.
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