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Abstract. In this work we outline two engineering methods which are developed in the Institute for 
Problems of Strength. The point weight function method makes easy the accounting for the 
different laws of loading (stress gradient) of crack surfaces of the given body with crack. The 
second one is well-known crack compliance method which can be very useful in accounting for the 
change of the body’s geometry.  Using the known SIF values for infinite strip with the edge crack 
we obtained the ready to use formulas for SIF calculation in cracked cylinders and toroidal shells. 
The examples of practical application of these methods for nuclear pressure vessels and transit 
pipeline are given. 

Introduction 

Stress intensity factor (SIF) for a mode I crack, or IK , is the key parameter for analysis of 
integrity and life time of structural elements with defects. Most often the SIF calculations are 
performed by FEM which requires a lot of time. In practical applications the crack dimensions as 
well as the loading conditions can hardly be unambiguously defined, thus multivariant calculations 
should be performed. In such cases the analytical formulas for SIF, which were constructed based 
on the analytical as well as numerical solutions, are the most useful for engineering applications. In 
spite that they are widely presented in the literature, they can not cover all the diversity of the real 
cases. Furthermore, the law of loading or the body geometry for the case of interest may be slightly 
differing from the basic one, the SIF solution for which is easily available and understandable. Is it 
worth to spend the time in searching the correct solution or we can use the basic solution? With this 
connection we can put some additional questions. What are the geometrical and loading parameters 
which predetermine the difference? Can we take them into account to construct the more accurate 
solution for the case of interest? As example, consider the pipe bend (toroidal shell). It is well 
known that the stress distribution patterns in it and in the straight pipe can differ significantly when 
the global bending moment is applied. Nevertheless, it is widely accepted that the SIF values for 
these two cases are the same if the cracked sections in both geometries are loaded by the same 
stress distribution.  

Two types of structural elements are usually considered: thick walled and thin walled. For thick 
walled one the crack is considered to be the elliptic or part elliptic form. For an elliptic crack in an 
infinite body there is a strict analytical expression for SIF: 
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where �  is the crack contour point angular coordinate, 0�  are the uniform normal stresses acting 
on the crack surface, a  is the crack semi depth, b  is the crack semi length, ab � , )(kE  is the full 
elliptical integral of the second kind, where 22 )/(1 bak �� . Usually the semi-elliptical cracks are 
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considered. The SIF values for them were calculated numerically and for uniform loading 
approximated by the expressions of the following type [1]: 

opseI ffKK ��� �0  (2) 

sef  is the correction on the semielliptical form, opf  is the correction on the proximity of the 
opposite body surface. These ready to use formulas of the above type are well established in the 
literature. The problems begin when the stress distributions are nonuniform, especially when the 
jumps of stresses on the crack surface take place. The example is the surface semielliptical crack in 
the reactor pressure vessels with cladding. To obtain the SIF value the boundary problem of 
mechanics of solids is usually solved by FEM. The point weight function method, which will be 
described below is a reasonable alternative to it.  

The thin-walled elements are usually treated by the shell theory, thus the stress distribution has 
two components: the uniform one due to the resultant membrane force, N , and the linear one due 
to the resultant couple, M . Here, the practical significance have the long surface cracks, the length 
of which is much bigger than the wall thickness of shell, t . The starting point for a subsequent 
analysis is the solutions for the infinite strip with an edge crack, which are known (or should be 
known) for every structural integrity specialists: 

� � � ������� MMIMNNIN YaKYaK �� ;  (3) 

where stresses tNN /��  and 2/6 tMM �� , ta /��  is a relative crack depth, the dimensionless 
SIFs � ��NY  and � ��MY  are well known and tabulated in the various handbooks [2, 3]. The aim of 
the work is investigation of the influence of the body geometries (straight pipe, pipe bend) on the 
above SIF values. Especially we are interested when the influence of the change of the body 
geometry is significant and when it can be neglected.  

Point Weight Function Method 

The idea of PWFM. The weight function 'QQW  is determined as the value of SIF in crack contour 
point 'Q  when the two unit concentrated forces, P  are applied to the opposite crack surfaces in the 
same arbitrary point Q [4]. Thus, according to the above definition, the SIF value 'QK�  in point 'Q  
for any distributed symmetrical loading )(Sq  can be found by relatively simple integration over the 
crack surface S :  

����
)(

'' )()(
S

QQQ dSQqQWK  (4) 

where dS is the element of crack surface area. Thus availability of 'QQW  excludes the necessity of 
the solution of the boundary problem. The idea of point weight function method consists in 
construction of an explicit expression for WF and is described in details in our works [5-7]. 
According to it the looking for WF for part- or elliptic crack for arbitrary 3D body, S

QQW ' , is 

presented as a sum of an asymptotical, A
QQW ' , and correction, C

QQW ' , components: 

C
QQ

A
QQ

S
QQ WWW ''' ��  (5) 
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For an elliptic crack the value of A
QQW '  is chosen to be equal to the fundamental solution (WF) for 

the elliptic crack in the infinite body, the possible approximate expression for it was suggested in 
our work [7]:  
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where �,r  are polar coordinates of the arbitrary point, �d  is the elementary crack contour length, 

'QQl  is the distance between points Q  and 'Q . For the quarter- and semi- elliptic crack, as it was 
shown in [5] it is needed to introduce the fictitious forces which are symmetrical to the given ones 
with respect to the free surface.   

The correction function, C
QQW ' , should be neglectfully small with respect to the asymptotical one, 

A
QQW ' , when the point of the force application, Q , approaches to the crack contour. It is convenient 

to take C
QQW '  in the form Q:  

� � ),()(/)(1'' ���� DRrWW A
QQ

C
QQ ���  (7) 

where )(�D  is the only unknown function in the PWFM. 
Thus, WFs for elliptic, semi- and quarter- elliptic crack is approximated by the following 

expressions, respectively: 
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where Q  is the point of force application; xQ , yQ , xyQ  are the points symmetrical to Q  with 
respect to the axis �, � �and the origin of coordinates, respectively (see, Fig 1). 
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Fig 1. The scheme of the elliptic crack 

The determination of the unknown function )(�D . For the given geometry of the body the 
function D(�) can be determined given for some law of crack surface loading, ),( yxr� , the solution  
for SIF is known (so called reference solution rK� ). In most cases in the literature the polynomial 
laws of the loading distribution are considered: 
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� � � � ji
ijij bxaycQqxy //)(),( ���  (11) 

where ijc  are the known coefficients. Substitute Eq (11) and (5) into (4) and accounting the above 
expressions for asymptotical and correction components, we obtain the expressions for 
dimensionless SIFs, ijG , (the influence coefficients): 
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where the following integrals are designated as dimensionless coefficients A
ijI  and C

ijI : 
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Given the solution for mnG , i.e. the SIF at mnr yx �� �),(  (see, eq (11)), the twice application of 
(12) initially allows to find the function )(�D  and after to calculate the value of ijG  at any other 
law of loading ),( yxij�� � : 

� � ),(/),(),(),(),(),( ������������ C
mn

C
ij

A
mnmn

A
ijij IIIGIG ����  (15) 

Formula (15) presents the essence of practical application of PWFM. Note that opse ffG ��0  (see eq 
2) is usually taken as the reference solution. The error imposed by the method is in the most cases 
equal to 3-5% and is within the error of determination of the reference solution by FEM. Note that 
functions ),( ��ijI  do not depend upon absolute crack dimensions, they can be found in advance 
and can be presented by the analytical expressions [7].   
The example of probability of fracture calculation based on Master Curve conception. 
Analysis of PTS (pressurized thermal shock event) in the reactor pressure vessels with a hypothetic 
crack requires a lot of calculations for different crack dimensions and various loading conditions. 
When considering the crack in the reactor with austenitic cladding with thickness, h , we need to 
account for the jump in the stress distribution at the cladding boundary. In this case we consider one 
additional law of loading:   
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The polynomial laws (11) together with the “jump” law (15) can approximate any real stress 
distribution. Note, that the coefficients ),( ��jumpI  can also be calculated in advance, and this is 
already realized in Ukrainian Recommended Practice for PTS analysis.  
The PWFM can be efficiently used in calculation of fracture probability based on the Master Curve 
concept. This concept is widely used for the determination of the fracture toughness on the small 
specimens. In the Russian document on the reactor life time determination [8] the next logical step 
was made – if some methodology is applied for the specimen then this one can be applied for the 
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structural element too. Thus the probability of fracture,
if

P , of each elementary length of crack 
contour, iB% , can be calculated by the following Weibull-type probability equation: 
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where MPaK 20min � , mmB 250 � , 4�b  and the fracture toughness curve with probability of 
fracture %2.63�fP  is given by the following expression: 

))(019,0exp(7731 00 bTTTK %�����  (18) 

where 0T  and bT%  are the material constants for the given condition of operation. Thus for the 
given crack in the real conditions of operation for each moment of PTS event the probability of 
fracture can be calculated. As an example, the relative (divided on the maximal value) fracture 
probability 

ifP distribution along the crack front for WWER-1000 is presented on the Fig2. 
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Fig 2. The distribution of the relative probability of fracture along the crack contour 

Crack Compliance Method 

The idea of CCM. This method is applicable only to 2-D problems, when the length of crack under 
consideration is long. The idea and practical implementation of the method belong to Cheng and 
Finnie [9]. According to it the crack can be considered as concentrated compliances (jumps in 
displacements, u% , and rotation angle, �% , take place in the section with a crack); while the rest 
part of a body can be treated by the beam-likes methods. Consider that the stress distribution in the 
cracked section in case of zero crack depth can be presented as )()( yqy qq �� �� , where q  is an 
intensity of this stress and )(yq�  is the unitary stress distribution in y -direction (along the wall 
thickness). Then due to the above jumps in the cracked section the continuity (or boundary 
conditions) of the beam-like body would be formally violated if it were not for the additional 
bending moment M  and longitudinal force N . As it was shown in our paper [10] for the thin-
walled structures to be considered below the jumps in the displacement u%  can be neglected and 
the expressions for �%  has the form [9]: 

)(6
' NNMMqqE �'�''�� ���%  (19) 

where i'  are the compliance coefficients for any type of loading designated by subscript “i” [9] 
and 'E  is the generalized Young modules:  

ifP  
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��
�

�����'
0

)()()( dYY iMi
 (20) 

The coefficients )(�'i  can be easily integrated numerically and presented in the analytical form: 

� � )843.030.249.245.1628.0(1 43222 ������' ������� �
N  (21) 

� � )35.157.368.301.2627.0(1 43222 ������' ������� �
M  (22) 

According to the principle of superposition the resulting SIF due to initial stress q�  and additional 
stress N�  and M�  can be written: 

IqIMINI KKKK ���  (23) 

Investigate the general form of presentation of the resulting IK . First of all note, that as it was 
shown in [10] for the geometries to be considered below we can neglect the contribution from the 
longitudinal force N . Besides, all additional forces arise only due to the jump of the angle �%  and 
should be proportional to it. Accounting for (19) and considering that additional M�  is such that it  
reduces both the �%  and SIF as compared with q�  we have:  

)()6/(')( MMqM qEGZ �''��� ��%�
�

  (24) 

where � �GZ
�

 is some function of the geometry of the body, G
�

. The determination of this function is 
a key problem in CCM. Expressing the M�  from (24) and substituting into (23) we obtain the 
general equation for the looking for SIF:  

� � � �� �)()()(1),(1 �'��( MIqIqI GZKGKK ������
��

. (25) 

Here we introduce the SIF reduction function ),( G
�

�(  and designate qMq YY /)( '� ��  which is the 
known function of the relative crack depth. The unknown function )(GZ

�
 can be found by some of 

the methods of the civil mechanics for the beam like structures. Authors prefer to use the method of 
initial parameters (MIP).  
Let in some section 0�s  the vector of initial parameters of a curvilinear beam is known which 
describe all the geometrical and mechanical parameters � � �� 0sX

�
 � �0000000 ,,,,, MQNwuX �

�
, 

where w  is the transverse displacement, Q  is the transverse force. Then the value of the vector of 
state of the beam in any other point, s , according to the MIP can be written: 

� � ) * 0)( XsAsX
��

� , (26) 

where the matrix ) *)(sA  is known and at the point 0��  is unitary one. Then we break up the beam 
into zones at whose boundaries the concentrated forces (supports) are applied or a crack is placed. 
For these boundaries we write the conditions of equality of all six parameters with allowance for the 
above jumps. Consider the examples for the practically important geometries.  

The allowance for a geometrical nonlinearity in a pressurized pipe with a long axial surface 
crack (ring with a radial crack). The system of the differential equations for the curvilinear beam 
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(Fig 3) we write in the geometrically nonlinear formulation, i.e. the expression for the curvature 
1�+  takes into account the deformation of the beam [10]:  

)/( '1
0

1 JEMR �� ��+  (27) 

where 12/3tJ � . As it was shown in a many works [11] the accounting for second term in the 
right-hand of (27) is important only in a equation for the increase of the transverse force, thus: 

00
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d
dQ �������� ��+�  (28) 

0
0 0; Rud

dwwd
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JE
MR

d
d �������� ����
�  (29) 

 
Fig 3 Ring with a radial crack 

The solution of this system is found as the sum of the particular solution and to the general one of 
the homogeneous system. The first one is 0PRN ��  and the latter system is reduced to the 
differential equation of the 6th order: 

0)1( 2 ���� IIIVVI uuu ,  (30) 

where ptEPR ����� 1/121 33
0

2, . In dependence of value 2,  we have three different cases the 
general solutions for which (only for geometrical components) are presented in Table 1. To solve 
the equation (30) (determine the values of the initial parameters) we need to have 6 boundary 
conditions. They are 0000 ��� wu �  and � � � � 0�� ���u . The geometrical nonlinearity appears 
also in that large “particular” longitudinal force due to angular jump, �% , in the section 0��  
gives a relatively big projection on the radial axis, i.e. on the transverse force Q . Thus instead of 

00 �Q  in this section we take �� %�-%�� 000 )sin( PRNQ . Omitting the details of calculation the 
resulting expression for � �GZ

�
 can be presented in form [10]: 

)9/()(0 tpRZ .�  (31) 

For the linear case 1�.  the formula (31) gives a good correspondence with the literature data on 
SIF determination [10]. The dependence of )( p.  is shown on Fig 4. Thus, formula (31) allows us to 
state that with increasing pressure the dimensionless SIF decreases. Whether this effect has the 
practical significance is demonstrated on the Fig 5. Assuming that �P�E 5102 ��  and / = 0.3, we 
plot graphs of the influence of the nominal stress ��  on the coefficient of the SIF reduction (Fig. 6) 
for some specific values of the tR /0  ratio (20 and 40) and relative crack depth (0.4 and 0.6). As it 
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follows from the graphs, a noticeable reduction of the dimensionless SIF for typical pipes at a 
practically possible level of circumferential stresses is observed. Thus, for a pipe with a crack for 

4.0�� , 20/0 �tR , and 200��� MPa, an additional decrease in the coefficient (  due to the 
action of the internal pressure is equal to )0()200( ((( ��% =0.06. The influence of the pressure 
for deeper cracks is more noticeable, for example, for 6.0�� , )0()200( ((( ��% =0.15. The 
above values of (  are large enough to be accounted for in practical calculation of the SIF.  
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Table 1. The MIP solution of the equation (30) for u  and �  

 
Fig 4. Dependence of the multiplier .  on the dimensionless pressure p  

The analysis of SCC failure of the transit pipeline. The gas transit pipeline section was fractured 
due to stress corrosion cracking. The pipe diameter is 1420 mm, wall thickness 15.7 mm  and the 
pressure, P , was 7.4 ���. The crack depth, a , found during the failure investigation was 6.8 mm 
while its length, c , was 676mm. The mechanical characteristic of material are: yield stress 

500Y �� �P�; ultimate strength 630U �� �P�. The two criteria approach is the most widely used 
method for the residual strength determination of the cracked structures. It envisages the determination 
of the reference stress r�  (limit load) and SIF.  
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b) 

Fig 5. The influence of nominal circumferential stresses due to internal pressure on the SIF 
reduction coefficient for two dimensionless depths of the crack: (a) � = 0.4, (b) � = 0.6. 

The value of r�  depends upon relative crack depth 433.0/ �� ta�  and relative crack length 

2.3/5.0 2 -� Rtc� . For such a long crack r�  can be approximately calculated taking into 
account only the relative crack depth, namely 583/)1( 1 -�� � tPRr �� MPa. The values of SIF are 
calculated a) as for the strip with an edge crack 7.111�IK  mMPa ; b) by formula (25) with (31) 
without taking into account the geometrical nonlinearity ( 1�. ) 333.109�IK mMPa ; c) with 
accounting for the geometrical nonlinearity 207.98�IK mMPa . The fracture toughness, ICK  

mMPa , of the pipe steel was determined by using the correlation of it with the impact toughness, 
KCV , 2/ cmJ : 

63.0)(36.7 KCVKIC �  (32) 

Accounting that 151-KCV  we obtain that ����KIC 173� . The limit curve of the two criteria 
approach [12] is shown on Fig.6 where three points of fracture and corresponding loading beams 
according to three calculated values of SIF are shown. Evidently accounting for the geometrical 
nonlinearity is significant in practical applications.  
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� r /� U

K I /K IC

 

Fig 6.  The limiting curve with calculated points of fracture according to different schemes of 
IK  calculation: � – as for strip with edge crack; � – by formula (25) with (31) where 1�. , � – 

with accounting for the geometrical nonlinearity 

The full circumferential surface crack in pipe (Fig.7). Consider that in the defected section 
with zero crack depth the bending moment, M , and axial force, N  are applied. The nature of these 
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loading factors can be different. The differential equations for relevant geometrical and mechanical 
parameters are well known and have the form:  

Et
R

dx
dQwdx

dMQJEdx
dMdx

dw
2

 ,, ����� ��  (33) 

which is reduced to the differential equation of the 4th order 

04 4)( �� wkw IV  (33) 

where � � )/(13 222 tRk 2��  
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Fig 7. Pipe with a full circumferential surface crack  

Equation (33) is supplemented by the boundary conditions: 

� �  0lim and ,0
x00 �����

34
wQ NN

add
MML �'��'� , (34) 

where add
M�  is additional bending stress. Omitting the usual algebraic operation the resulting 

expression for the geometric function � �GZ
�

 has the form:   

� � )3/(1 tkGZ ��
�

 (35) 

The dependence of dimensionless functions � �),(1 G
�

�(�  for cases when we initially (in the 
cracked section with crack of zero depth) had only the bending moment (it is designated as M ) 
as well as only longitudinal force (it is designated as N ) is shown on the Fig 8 
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Fig 8. The dependence of the dimensionless SIF on the relative crack depth  

for 10/ �tR  when Mq �  and Nq � . 

The results obtained for dimensionless SIF for case of outer loading by the longitudinal force 
( KYaK NNI ��� ) are compared with numerical data given in [13]. The results testify about the 
good accuracy of the CCM. 
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� � 8.0�� tRR  � � 9.0�� tRR  
ta  

results of [13] CCM results of [13] CCM 

0.1 1.138 1.146 1.158 1.158 
0.2 1.198 1.223 1.253 1.268 
0.3 1.286 1.311 1.392 1.407 
0.4 1.397 1.416 1.568 1.579 
0.5 1.529 1.559 1.779 1.8 
0.6 1.688 1.714 2.025 2.037 

Table 2.The comparison of the dimensionless SIF according to the CCM with results of [13] 

The system of the periodical cracks in the ring loaded by the inner pressure. Formulas given 
in table 2 together with the procedure of MIP allow to easily organize the calculation for any 
number of cracks of different dimensions with a different spacing between them. Consider the 
simplest geometrically linear ( 1�. ) case of the symmetrical spacing of n cracks (where 2�n )  of 
the same depth. The boundary conditions are following 00 �Q , and the value of the angle �  just in 
the right-hand of point 0��  is opposite to its value at the left-hand of the point n/2�� � . The 
ultimate formula for geometrical function � �GZ

�
 is following:  

� � )3/(0 ntRGZ �
�

 (36) 

The results obtained were discussed in work [14]. It can be noted that for 3�n  the SIF values 
for pipe with a periodic system of cracks become smaller that this one for single crack.  

Two symmetrical crack at the crown of pipe bend. The most important geometrical parameter 
which distinguish the stress patterns in pipe bend with such one in a straight pipe is the flexibility 
parameter BtR2�� , where R is radius of the bend section, B  is the radius of bend, t  is wall 
thickness. The difference in stress distribution reveals significantly when the pipe bend is loaded by 
the global bending moment and value of 11� . In this case the cross sections of the bend are 
subjected also by the transverse forces and they ovalize. The effect of ovalization of the pipe bend 
at bending is well understand and thoroughly described in the literature. From other hand, in the 
literature the view still prevails [15,16] that SIF in pipe bend is the same as in the straight pipe 
provided that the stress distribution through the wall thickness in each section is the same, i.e. the 
weight functions for both cases are the same.    
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Fig.9. The cross section of pipe bend with two symmetrical cracks  

Explore this statement about the difference between the bend and the straight pipe. It is 
expedient to make the analysis for two symmetrical (from the point of view of the simplicity) long 
axial surface crack situated at the crown, 0��  and �� � , (Fig 9) of the bend (where the bending 
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stresses are maximal). The problem is reduced to the finding of the dependence of SIF with respect 
to � . Then comparing the )(�SIF  with )0( ��SIF  we can establish the influence of the flexibility 
parameter �  on the calculated SIFs.  
The mathematical formulation of this task is very similar to that of the straight pipe. The difference 
is that homogeneous equation has a slightly different form caused by that axial u  and radial w  
displacements lead to the appearance of the transverse force which ovalize the section. In general it 
can be presented in following formal writing [17]: 

),()1( 2 uuCFuuu IIIIIVVI ���� ,  (37) 

where � �22 112 2� ��C  and the F  is some operator which contains the functions uu II ,  and their 
product with �2cos . The scheme of solution is the same. We use both the analytical solution of the 
equation (37) as well as its numerical solution. The main results of both for the looking for SIF can 
be presented in the same form as for all above tasks: 

� � � �)(6/ �addtRGZ 5�
�

 (38) 

where the function of pipe bend flexibility influence )(�add5  calculated by analytical as well 
numeric procedure is shown on Fig 10. It can be concluded from it that increasing of �  decreases 
the values of SIFs. The values of SIF in pipe bend correspond to that in straight pipe which has the 
radius smaller in )(�add5  times. To support the results obtained we cite the work [18], where for 
long axial crack in pipe bend the SIFs values were slightly smaller than those in a straight pipe of 
the same radius and thickness.  
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Fig 10. The analytically and numerically calculated dependences of � ��add5 . 

Summary 
Two engineering methods of SIF calculation are considered. The practical application of point 
weight function method for a high gradient stress distribution is reduced to the determination of an 
influence coefficients which can be calculated in advance and presented as the some known 
function along the crack front. The possibility of employing the Master Curve concept for the 
probability of fracture determination during the PTS event is demonstrated.  
The application of crack compliance method for thin-walled 2-D structures with a 1-D crack allows 
establishing a general pattern of an analytical SIF presentation. The looking for SIF is written as a 
product of the SIF for an infinite strip with an edge crack and some correction function which is 
responsible for the particular geometry of the body under consideration.  

� ��add5  

�  

analytically 

numerically 
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