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Abstract. The concept of R-curves has been adopted to characterise stable crack extension and 
predict residual strength of thin-walled structures particularly in the aircraft industry. The present 
contribution uses results of FE simulations of crack extension in panels by the cohesive model to 
validate analytical procedures for determining J-integral values at large crack extension from 
measurable quantities, namely the force vs. displacement records. The numerically determined J-
integral is taken as the benchmark for the outcome of the analytical formulas. 

Introduction 

The familiar concept of JR-curves originally established for thick-walled components under plane-
strain conditions has also been adopted to characterise stable crack extension and predict residual 
strength of thin-walled components under plane-stress conditions, particularly in the aircraft 
industry. It requires other specimen types, primarily large cracked tensile panels allowing for 
pronounced ductile crack extension prior to failure. The respective test procedures and standards are 
not as well founded as those for plane-strain specimens. ASTM E 1820 [1] does not include M(T) 
specimens at all, and ASTM E 561 [2] yields R-curves in terms of the stress intensity factor as a 
function of the "effective" crack length. Though the knowledge about the evaluation of JR-curves 
from force-displacement records is quite old, namely more than 30 years, the formulas extracted 
from the literature are still controversial, which impedes any sound discussion on the validity of R-
curves, as experimental investigations on this matter suffer from inconsistent data. The present 
contribution uses results of FE simulations of crack extension in panels by the cohesive model to 
validate analytical procedures for determining J-integral values at large crack extensions from 
measurable quantities. The numerically calculated J-integral is taken as the benchmark for the 
outcome of the analytical formulas. As no discussion on the significance of R-curves for 
characterising ductile crack extension is intended, no respective validity conditions have to be 
considered. However assuring that at least a correct J-value has been determined is a necessary 
prerequisite for discussing the problem of validity of JR-curves!  

Basic Equations 

The J-Integral as Energy Release Rate. The basic idea of determining J from an experimental 
force-displacement record as depicted in Fig. 1 for a stationary crack is more than 30 years old. It 
utilises the nature of J being an energy release rate in the deformation theory of plasticity. At some 
displacement, v, a small increase of the crack surface, �A, under "fixed grips" (constant 
displacement) results in a release of mechanical work, �U, and the negative ratio �U �A  for 
�A� 0  is the J-integral. For a panel shaped specimen of thickness B with a through-crack and a 
straight crack front we have �A = B�a = �B�b  for each crack tip, where b =W � a  is the ligament 
length. Note that for an M(T) specimen the width is 2W and the crack length is 2a. Thus we obtain  
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An alternate and equivalent definition of J [4] is given by 
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Fig. 1: Force-displacement curve of a fracture 
specimen with a stationary crack of length a0

Fig. 2: Force-displacement curves of a fracture 
specimen of initial crack length a0 undergoing 
crack extension and two fictitious specimens 

with stationary cracks of lengths a(i�1) and a(i )

The load-point displacement, v, is split into an elastic (linear, reversible) and a plastic (nonlinear, 
permanent) part (which of course is contradictory to the assumption of deformation theory), 
v = vel

+ vpl , and so is the mechanical work or deformation energy and, hence, the J-integral, 

U = Fdv
0

v

� = Fdvel

0

vel

� + Fdvpl

0

vpl

� =
1
2 Fv

el
+ Fdvpl

0

vpl

� =U el
+U pl  . (3) 

J = J el
+ J pl  . (4) 

Applying this separation in elastic and plastic fractions, eqs. (1) and (2) hold likewise for J pl , U pl ,
and vpl . The elastic part is calculated from the mode I stress intensity factor, assuming plane stress 
conditions in metal sheets 

J el
= K 2 E   with K = �

�
�aY a W( ) . (5) 
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The Keff Concept. ASTM E 561 [2] regulates the determination of KR-curves, i.e. Keff = K aeff( ) , as 
crack growth resistance, "so long as specimens are of sufficient size to remain predominantly elastic 
throughout the duration of the test". Two options of determining aeff  are proposed. Under small 
scale yielding conditions, the stress field is dominated by an "effective" stress intensity factor, 
which - according to Irwin - results from a plastic zone correction of the physical crack length by 
the radius of the plastic zone,  

aeff = a + rpl = a0 + �a + rpl = a0 + �aeff  with rpl =
1
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assuming plane stress, again. K can be modified once by aeff according to eq. (6) to yield Keff or 
iteratively, as aeff depends on K. Alternatively, aeff can be calculated from the compliance of the 
specimen, regarding the elastic-plastic deformation of the specimen with crack length a as an elastic 
deformation of a (fictitious) specimen with crack length aeff ,

v = vel
+ vpl

= C a( )F + vpl
= C aeff( )F  . (7) 

The compliance is determined experimentally or from analytical formulas. For comparison with 
other R-curve formulas, Keff will be converted to J according to eq. (5). 

JR-curves for cracked metal sheets 

C(T) Specimens. ASTM E 1820 [1] is the standard test method for measurement of fracture 
toughness on bend-type specimens. Though it is particularly designated to thick (plane strain) 
specimens, the formulas do not contain any restriction with respect to the thickness of the test piece. 
The elastic part of J is calculated according to eq. (5). Starting from the J-value at crack initiation, 
further values J( i)

pl
= J pl a( i)( ) = J( i�1)

pl
+ �J( i)

pl  are calculated stepwise for crack extension increments 
�a( i) = a( i) � a( i�1) . The basic assumption behind this technique is that a specimen, which has 
undergone crack extension, has the same value of J(i )  as a postulated non-linear elastic specimen at 
the same load, F(i ) , displacement, v(i ) , and final crack length, a(i ) , which was not subject to crack 
extension, see Fig. 2. The problem reduces to constructing a force-displacement curve for such a 
specimen. As the respective formulas are well established and written down in the standard, they 
are not repeated here. The procedure requires the calculation of the plastic work, which is obtained 
from the force vs. load-line displacement records. The plastic part of the latter is determined from 
the measured total displacement by subtracting vel calculated from the elastic compliance.  
ASTM E 561 [2] provides the respective equations for determining Keff = K aeff( )  according to eqs. 
(6) and (7). 
The GKSS test procedure EFAM GTP 02 [3], which is based on the ESIS Procedures P1 and P2, 
proposes an empirical "crack length correction", 

J (a) = J (a0 ) 1�
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, (8) 

where � = 2 + 0.522b0 W , without providing any reproducible background of this equation.  
M(T) Specimens. There is no standard like ASTM E 1820 [1] for tensile-type fracture specimens. 
Several formulas have been derived in the literature but never been standardised. The elastic part 
results from K, where commonly the "secans formula" for the geometry function is applied  
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ASTM E 561 [2] provides an alternate expression, which appeared to be improper for a W( ) > 0.6 ,
however.  
Based on eq. (2), Rice, Paris and Merkle (RPM) [4] have derived the formula  
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for an M(T) specimen with constant crack length. This equation can be extended to crack growth by 
the assumption explained above, see Fig. 2. It results in 

J( i)
pl
= J( i�1)

pl
b( i)

b( i�1)

+
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pl
� F( i)v( i�1)

pl
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Garwood, Robinson and Turner (GRT) [5] proposed a procedure to calculate the total J from the 
load-displacement curve. It yields 
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which is slightly different from the total J calculated according to eq (11) and adding the elastic part 
from eq. (5).  
Hellmann and Schwalbe [6] provide a formula with reference to GRT [5] but have apparently 
missed that the increment of crack surface in an M(T) specimen is �A = 2B�a . Recently, Neimitz 
et al. [7] tried to calculate the increment �J( i)

pl  via the total differential of eq. (10). They overlooked, 
that the latter consists of two part, namely for constant displacement and for constant crack length, 
see Fig. 2,  
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The GKSS test procedure EFAM GTP 02 [3] recommends the empirical crack length correction of 
eq. (8) with � = 1 .
Most authors apply ASTM E 561 [2] for large thin panels as used in the aircraft industry, e.g. [8, 9]. 

Validation of the R-curve formulas 

Tests and Numerical Models. Investigating the accuracy of the various equations for evaluating J 
requires reference solutions to compare with. This is only possible by applying numerical models 
accounting for crack extension, which provide consistent data for the quantities used in the above 
equations, namely F, v and a, as well as for the J-integral. As has been shown in several papers, e.g. 
[10 - 12], ductile crack extension in metal sheets can be adequately modeled with cohesive 
elements. The data presented here have been obtained for an aluminium-magnesium alloy 
Al 5083 H321, E = 71600 MPa, Rp0.2 = 240 MPa, which is widely used in shipbuilding and 
automotive industry. Several fracture specimens with different sizes have been manufactured from 
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rolled plates of 3 mm thickness, which were tested under quasi-static conditions. The parameters of 
the cohesive model, namely the cohesive strength, �c = 560 MPa, and the separation energy, 
�c = 10 kJm-2, have been determined from C(T) specimens of W = 50 mm and validated for other 
specimens geometries and sizes; for details see [10]. Fig 3 shows the experimental and numerical 
force vs. displacement curves of C(T) and M(T) specimens of width W = 150 mm. The coincidence 
between test and simulation results is reasonable, keeping in mind that a unique set of cohesive 
parameters has been used to model crack extension in various specimen geometries and sizes. Any 
discrepancies occurring between test and simulation data do not affect the following conclusions, 
anyway, as the intention is just to have a set of consistent data to check the accuracy of the above J 
formulas.  

(a) (b)
Fig. 3: Force-displacement curves of 3 mm thick, cracked panels of Al 5083, width 150 mm, 

comparison of tests and simulations with the cohesive model;  
(a) C(T) a0 = 75 mm, (b) M(T) a0 = 30 mm 

 

Evaluation of Numerical Data The data of the numerical simulations are taken to evaluate JR-
curves. The J-integral value calculated by ABAQUS is used as reference. Special care has to be 
taken to ensure obtaining a "far-field" value of J [13], which is comparable to the values calculated 
from a global force-displacement curve. Fig 4 shows the results.  

(a) (b)
Fig. 4: JR-curves of cracked panels of Al 5083, thickness 3mm, width 150 mm, comparison of 

various evaluation procedures; (a) C(T), (b) M(T) 
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Generally, little differences occur up to crack extensions of �a � 10mm , which is 0.13(W � a0 )  for 
the C(T) and 0.08(W � a0 )  for the M(T), respectively, but the deviations may become significant 
for large crack growth. ASTM E 561 based on the plastic zone correction, eq. (6), fails beyond 
�a > 10mm  for the C(T) and did not produce any useful result at all for the M(T) specimen. EFAM 
GTP 02 [3], eq. (8), starts becoming improper beyond �a > 0.27(W � a0 ) , and so does ASTM 
E 1820. An analysis of the data revealed a discrepancy between the FE data and the ASTM E 1820 
procedure in splitting elastic and plastic energies according to eq. (3). Both ASTM E 561, eq. (6), 
and EFAM GTP 02 show a decreasing JR-curve for large crack extension, which is physically 
meaningless. Whereas ASTM E 561 based on the compliance, eq. (7), gives the best approximation 
up to �a = 50mm = 0.66(W � a0 )  for the C(T), it overestimates J significantly beyond 
�a > 0.12(W � a0 )  for the M(T). The eq. of Neimitz et al. [7] for the M(T) and the EFAM GTP [3] 
start overestimating J beyond �a > 0.17(W � a0 )  and �a > 0.25(W � a0 ) , respectively. The RPM 
eq. (11) and the GRT eq. (12) produce perfect approximations up to �a = 65mm = 0.54 (W � a0 ) .

Significance of the R-curves  

Once a correct R-curve can be generated from the experimental data, the question of its significance 
for describing ductile crack extension may be raised, i.e. its "validity". No respective 
recommendations or guidelines are provided in the standards. This question cannot be answered 
here, as it would require systematic experimental and numerical investigations. The present data 
may be used however to give a first impression about the transferability of J or CTOD based R-
curves. Fig. 5 displays the respective results for the C(T) and the M(T). The CTOD R-curves are 
based on the �5-parameter by Schwalbe [14]. 

(a)  (b)
Fig. 5: R-curves of 3 mm thick C(T) and M(T) specimens of Al 5083, width 150 mm, as obtained 

from simulations with the cohesive model; (a) J-integral, (b) CTOD �5

The range of validity, i.e. of geometry independence is obviously much larger for the CTOD R-
curves. 

Summary 

Though the basic concepts for determining J from experimental force-displacement records are 
quite old, they have not yet found their way into standards or guidelines for other than thick bend-
type specimens. The KR-curve concept of ASTM E 561 is accepted for structural assessment in the 
aerospace industry, but its background is obsolete. It might work well in some cases but completely 
fail in others. No sound discussion on the validity of R-curves for thin-walled structures and M(T) 
specimens is possible, as long as experimental investigations on this matter suffer from inconsistent 
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data. As J cannot be measured directly but has to be evaluated from measurable data like forces and 
displacements, there is no possibility for an experimental validation of the respective evaluation 
procedures.  
The present contribution uses results of FE simulations of crack extension in panels by the cohesive 
model to validate analytical procedures for large crack extension. The conclusions are 
� ASTM E 1820 has a limited range of application for C(T)-type specimens of 

�amax � 0.25(W � a0 ) .
� The Keff-concept of ASTM E 561 is questionable. The option of a plastic zone correction is 

virtually useless. The alternate option of determining aeff from the specimen compliance 
worked even better than the ASTM E 1820 procedure for the C(T), but with the experimental 
techniques of present days given, there is no real necessity of defining an "effective" crack 
length. 

� JR-curves of thin M(T) specimens can be correctly determined up to large crack extensions by 
the formulas of RPM, eq. (11), or GRT, eq. (12). 

� There seems to be no necessity, either, to use empirical equations like in EFAM GTP [3]. They 
do not provide any advantage of simple application and their validity range is limited.  

ESIS would be well advised to consider these results and conclusions in the revision process of their 
test procedure P3-08 for determining the fracture behaviour of materials. 
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