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Abstract. The paper deals with computer simulations of fracture process in concrete. 
The heterogeneous material is represented by the two-dimensional rigid-body-spring network and 
the fracture process proceeds by a sequence of linear steps (events) in which elements are removed 
from the stiffness matrix one-by-one. This simple and well known approach provides realistic crack 
patterns and model responses. Obviously the solution is influenced by the mesh structure. The paper 
shows that the crack pattern is chaotically dependent on the network and the dependency of model 
response on the network element size is discussed as well.     

Introduction 
The lattice representation of material is a natural alternative to classical approaches. The first simu-
lation of fracture using lattice has been published in theoretical physics in 1989 [1]. Since that time,
many types of lattices and fracture criteria have been developed. The applicability of such kind of 
network models is often restricted by a computer performance. In these days, extensive lattice simu-
lations in 3D are being calculated [2-4].

The most attractive feature of the lattice approach is that the material structure is directly embed-
ded. Consideration of the structure enables application of primitive constitutive laws of all material 
phases. Indeed, these ideally brittle elements together reflecting the inner structure can exhibit sof-
tening at the structural level. However, the correct behavior of simulated specimen/structure is con-
ditioned by an enough detailed representation of the material structure layout. This leads to extreme 
computational demands because the average lattice element length should not be greater than the 
minimal aggregate diameter [5].

An advantage of the lattice representation is the ability to predict realistic crack patterns. Many 
properties of the fracture process zone can also be investigated (see [6]) because the material cha-
racteristic length is incorporated by the applied material structure. 

The paper focuses on the dependency of obtained solutions on the network without the ambition 
to present extensive simulations needed for representation of real specimens. The paper starts with 
a brief description of the model adopted: 2D rigid-body-spring network introduced by Bolander [7]. 
The influence of network element size on a simulated response is discussed both for a homogenous 
and disordered material structure. Then, the text deals with a crack pattern dependency on the net-
work structure. Since the material structure is embedded one might expect a unique crack path inde-
pendent of the selected mesh. We show that the crack pattern (and also the sequence of broken ele-
ments) strongly depends on the mesh.       
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Modeling framework 
One can find many types of lattice elements in the literature. The simplest and intuitive element type 
is a truss element (e.g. [8]). In order to obtain a correct crack pattern it is necessary to use elements 
that can carry bending moments [9]. There are two main ways how to transmit the bending forces 
between nodes: one can use (i) beams instead of springs ([10], for instance) or (ii) apply the concept 
of rigid bodies in which the domain is discretized into interconnected rigid cells that share contact 
areas. The physical background of the second approach, originally proposed in [11], seems clearer 
and we use it in this work.     

To reduce spurious dependency of the failure pattern on mesh structure, an irregular geometry 
has been chosen [12]. The only argument to discretize the domain regularly is to avoid difficulties 
during elastic homogenization [13] but there exists an elegant and strong method to ensure elastic 
uniformity of the network resting on Voronoi tessellation [6].

The irregular network can be generated simply according to [14]. Here we utilize another algo-
rithm developed in [15] which is able to mesh also nonconvex domains. Nodes are placed into 
the domain pseudo-randomly with a restriction of minimal mutual distances. This procedure pro-
vides a control over the mesh density inside the domain. Then, the connectivity is introduced by 
local Delaunay triangulation for each node separately. The borders of the domain are included via 
a set of auxiliary points (see Fig. 1).         

Fig. 1.  Tessellation procedure according to [15]. A loop over all nodes performs the local Delaunay 
triangulation (involving auxiliary points) and subsequently constructs one Voronoi cell in each step.   

Since we simulate specimens of laboratory scale, the material meso structure has to be reflected. 
The material at hand is concrete and so the grain layout has to be represented. Aggregates are com-
puter-generated according to Fuller distribution and placed into the specimen volume by random 
sequential addition [16], see Fig. 2. The simulated network is then overlaid by the aggregates and 
the lattice elements are divided into three classes (phases) depending on their position (aggregate, 
matrix or both).    

Fig. 2. Left: an example of the computer generated aggregate structure; middle: the network overla-
id by the structure of aggregates; right: the separation of the three phases of material. 
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Fig. 3 shows two connected Voronoi cells. The interactions between cells are ensured by shear 
and normal springs attached in the middle of the contact lines. Rotational springs are often imple-
mented as well (see [7], for instance) however, in the present model the bending moment is trans-
mitted only using the mentioned translational springs and their eccentricity. All springs are ideally 
elastic-brittle. The parameters of the springs are set up according to the material phases. The inter-
face elements are the weakest ones. The ratio of spring parameters is adopted from [17]; the particu-
lar values are multiplied by a constant to match some experimental responses. The ratio 4:1 used 
between tensile strengths of the matrix and interface is supported by acoustic emission results [6]. 
An important part of the model is the failure criterion surface plotted in Fig. 3.   

Fig. 3. Left: motion of rigid bodies. Right: element failure criterion surface for the three distin-
guished material phases. 

The solution of response to a proportional loading proceeds in linear steps. First, the network is 
subjected to a reference load and the connection ci,j with maximal load is found. The step solution is 
scaled such that the connection ci,j reaches the failure criterion surface. Then the springs of connec-
tion ci,j are removed from the stiffness matrix and the next step follows. An example of a solution, 
obtained for mixed-mode simulation of Nooru-Mohamed test (load-path 6a [18]) is plotted in Fig. 4. 
The red line represents a smooth response where only steps with an increasing prescribed deforma-
tion remain. The same smoothing has been applied to responses from here on.       

The lattice works with normal and shear stresses of springs. Article [4] proposed a way to obtain 
fields of stresses �x, �y and �xy. One has to cut the Voronoi cells along two perpendicular lines and 
find the equilibrium (Fig. 5). In case of a poor discretization the stresses �xy and��yx can differ signifi-
cantly.     

Fig. 4.  Plot of linear steps of a mixed-mode simulation. The red line is the smooth solution where
only an increasing displacement was accepted.  
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Fig. 5.  Nodal stress evaluation. Left: Voronoi cell and corresponding spring forces. Middle and 
right: components of stress calculated on perpendicular cut faces.     

Dependency on element size 
The consistent results should be independent of a selected discretization. Surprisingly there are not 
many articles considering the influence of the network shape and fineness on the lattice simulation 
results. In order to avoid the dependency on lattice element size the constitutive law can be extended 
to adopt softening and adopting e.g. the crack band concept [19]. Such an approach is described in 
[20]. Unfortunately the simplicity of the step-by-step linear solution would be lost then and the sof-
tening caused by the material structure would get mixed with the softening from the constituents. 

A simple test will now show the strong dependency of our brittle element lattice on the element 
size. The uniaxial tensile test simulations have been calculated for different discretizations of the 
domain. The specimen considered is a cube 50×50×50 mm with notches included by removing cer-
tain connections along the notch. The mesh size of 1 mm means that the distance restriction applied 
during node placing algorithm was 1 mm. We have calculated the task for mesh sizes 1.00, 0.50, 
0.33, 0.25 and 0.20 mm. The material was considered homogenous in that the aggregate structure 
was not applied. The obtained responses and crack patterns are plotted in Fig. 7. There is a signifi-
cant discrepancy between the curves.  

The results are not surprising. Fig. 6 is included to elucidate the source of this dependency by 
showing the fields of principal stress �1 on a detail of virtual specimen with a stress concentrator. 
The same load level causes different stress peaks for various mesh sizes. Since we apply critical 
stress criteria only, the finer the mesh, the lower load level is needed to further propagate a crack. 
This problem can be solved using some more sophisticated energetic failure criteria. A homogene-
ous mesh size independent lattice is published in [21]. It is based on different failure criterion for 
elements at the crack tip and the rest bulk elements. The springs at the crack tip break when they
reach certain energy or, in other words, their tensile strengths are changed based on their length and 
the characteristic length.   

The same task has been calculated also for a heterogeneous lattice. Fig. 7 presents the results for 
four different mesh sizes. In this case, all the responses judged by diagrams are similar. Also the 
energies released during the simulations are similar.  

Fig. 6.  Detail of a virtual specimen with a stress concentrator subjected to the same prescribed hori-
zontal displacements of supports. The color of Voronoi cells represents the first principal stress.   
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Fig. 7.  Demonstration of network element size dependency. Top: Responses of the uniaxial tensile 
test of virtual notched specimens 50×50×50 mm are plotted for homogenous and disordered mate-
rials. Bottom: computed crack patterns. 

The main argument is that the irregular aggregate structure, besides others features, reduces the 
mesh size dependency. We now shall find the limitations of this hypothesis. 

Crack pattern variability 
The simulations presented in Fig. 7 bottom performed with an identical disordered material struc-
ture and varying mesh densities show different crack patterns for different networks. This means 
that the shape of the crack is not determined solely by the aggregate structure and mechanical prop-
erties of the lattice. Unfortunately, it is also driven by the network structure. The following section 
describes this influence using different networks of identical mesh densities.  
In order to analyze the dependency four networks were prepared. The size of the specimen and the 
load was the same as in the previous section, only the notches were considered already during 
the tessellation. The reference network, denoted as A0, was generated in ordinary way. To obtain 
the other networks, the nodes from network A0 were shifted pseudo randomly in both directions. 
The maximum distance in each direction was 0.1 mm (or 0.01 mm and 0.001 mm) for the net A01
(or A001 and A0001 respectively). The model is based on Voronoi tessellation and therefore the 
cells had to be generated from scratch. Since the disturbances were quite small, only the amount of 
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342 elements (or 33 and 1 respectively) of total 9129 elements were replaced by different connectiv-
ity of meshes A01 (or A001 and A0001 respectively).  
The obtained crack patterns are plotted in Fig. 8. There are some common parts but the general pat-
terns differ. Surprisingly, visual comparison identifies the pattern A0 closer to A01 then to the pat-
tern A0001. A deeper analysis is showed in Fig. 9. Three plots present comparisons of disturbed 
networks with the reference one. The steps (events) of both simulations are plotted in parallel with 
a constant increment. Two events on both parallel coordinates are connected by a line when an iden-
tical connection was broken in both networks (the same pair of points were disconnected). One can 
also see the development of tensile force right below the parallel coordinates graph (only smoothed 
values are plotted as shown also in Fig. 4). Fig. 9 also compares all responses in a single plot.  

Fig. 8.  Crack patterns of simulations with disturbed nodal positions. A0 is the reference network, 
nodes in the networks A01 (or A001 and A0001 respectively) are pseudo-randomly shifted in each 
direction. The maximal shift distance is 0.1 mm (or 0.01 mm and 0.001 mm respectively).  
       

Fig. 9.  Comparison of A series simulations. The sequence of broken elements in two simulations is 
compared using parallel coordinates (events with the same broken elements are connected by 
a line). The development of load is plotted right below the parallel coordinates. 
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First of all, the discrepancy between the responses is obviously caused only by a few last events. 
The graphs of load vs. event number for A0 and A0001 simulations show a good agreement between 
the curves except for the last 250 events. Since most of the events are take place around the peak, 
those 250 events cover 75% of load – displacements graph.  

The parallel coordinate plots revealed that the sequence of A01 events is much further from A0
than the sequence of A001 events. This fact again points to the importance of the last few failure 
events that determine the general crack pattern. The microcracking in simulations A0 and A0001
was almost identical, the difference occurs during coalescence into the final macrocrack.    

We point finally that the crossing bundles of event connections in the parallel coordinate graph 
show microcracking at the same location inside the specimen but at different stages of the simula-
tion process.    

Summary 
The step-by-step linear lattice model has been studied. Reduction of the net element size dependen-
cy for disordered materials (using the aggregate structure) has been shown. Limitations of such 
a reduction deserve further investigation (ongoing work by the authors). The mesh dependency is 
also exhibited through a variable crack pattern. A nearly chaotic behavior of general crack has ap-
peared: a small disturbance of the network leads to a substantially different macrocrak. 
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