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Abstract. We present new results of stress calculations in anisotropic continuum focused on 
generation of twins and dislocations at the crack front in bcc iron observed in 3D molecular 
dynamic (MD) simulations with edge cracks (001)[110] and (110) [110] (notation crack plane/crack 
front). The cracks are loaded in mode I. The stress calculations have been performed for plane strain 
and also plane stress conditions. This multiscale approach enable us to understand why the slip 
processes start at the free sample surface and why they are observed in MD both on the inclined and 
oblique slip planes to the crack front, similar to experimental observations on cracked iron crystals 
with low content of silicon.  

Introduction 
In this paper, crack induced stresses are calculated in the framework of linear elastic fracture 
mechanics (LEFM) utilizing the self-similar concept, including the K-factor and T-stress [1-3], and 
considering an anisotropic solid in order to make a comparison with the atomistic results as self-
consistent as possible. No periodic boundary conditions have been used in our MD simulations [4] 
where the sample surfaces are free, except the loaded sample borders. At the free sample surfaces 
plane stress conditions prevail, while in the middle of the sample there are rather plane strain 
conditions, hence the stress analysis has been performed for both plane stress and plane strain. 

The cracks considered in this paper (in atomistic simulations [4] and experiments [5, 6]) have 
non-zero initial crack opening, unlike the assumption in LEFM. However, the ratio of the crack 
length vs. half crack opening is a/c/2 >> 20 and thus, according to Goodier’s isotropic [7, 8] and 
also anisotropic solutions by Savin [3, 9] for elliptical cavities, they can be considered as the narrow 
cracks and treated by LEFM. 

Stress analysis for inclined and oblique slip planes at the crack front 
The crack tip stress field equations for mode I in anisotropic continuum with a basic coordinate 
system shown in Fig. 1 can be written [10] as 
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where 1μ  and 2μ  are complex variables and they represent conjugate pair of roots from the 
compatibility equation 

4 3 2
11 16 12 66 26 222 (2 ) 2 0A A A A A Aμ μ μ μ− + + − + = (2) 

The symmetric compliance constants Aij describe [10] the strain-stress relations in anisotropic 
medium. In the case of cubic crystals A16 = A26 = 0. 

Fig. 1 Basic coordinate system 

Under plane strain conditions Aij can be found from the ‘unconstrained’ compliances sij for cubic 
crystals and from the condition 33 31 11 32 22 33 330 s s sε σ σ σ= = + +  determining also the third stress 
component 33σ . Under plane stress the constants Aij are identical with sij. Since the constants Aij are 
different for plane strain and plane stress, also the complex variables 1μ , 2μ  will differ. 

Our stress analysis is based on comparison of the slip stress bτ  (acting on the slip plane in the 
direction of the Burgers vector b) with the critical stress needed either for twin generation twinτ  or 
dislocation emission dislτ . The slip stress bτ  can be calculated from the crack tip stress field by 
LEFM after corresponding transformation of the coordinate system, while the critical stresses twinτ
and dislτ  are ‘materials’ parameters determined from the block like shear (BLS) simulations [11] 
with the interatomic potential used in our MD simulations [12, 13]. 

The T-stress acts parallel with the crack plane and it can modify the value of the critical slip 
stress twinτ  and dislτ  respectively according to scheme by Rice [1]: sin cosc c Tτ τ θ θ→ + , if the slip 
system is inclined at angle � as in Fig. 1. If not, then the angular function staying at T will be the 
same as for the stress component �11 after the coordinate transformation. If T is negative, then it 
decreases the critical values twinτ  and dislτ . The T-stress for our finite sample geometry is 
approximated according [2] by the relation 

2 3 4 5

2

0.526 0.641 0.2049 0.755 0.7974 0.1966 0.61399
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−
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where 0 /l Wα =  = 0.3 and l0 and W are the initial crack length and sample width respectively, Aσ
is the applied stress. In MD simulations, the mentioned slip processes are observed close to the 
critical (Griffith) level of the applied stress, hence in our stress analysis we calculate with the 
applied stress 

0/( )A cr G IK F lσ σ π= = . (4) 
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Here 1.27IF =  is a boundary correction factor by Harris [14], KG is a critical stress intensity for 
cleavage crack initiation defined [10] by the relation 22 GCKγ = , where -2

001 1.812 Jmγ γ= =  and 
-2

110 1.585 Jmγ γ= =  are the surface formation energies [12] for the cracks (001) and (110)

respectively and 11 22 22 11 12 66 11/ 2 / (2 ) / 2C A A A A A A A= + + , [10].  
Twinning and dislocation emission in MD simulations [4] were observed both on the inclined 

and oblique slip planes. The inclined slip plane contains the crack front, while the oblique slip plane 
intersects the crack front. The angle � in Fig. 1 and Eq. 1 can be determined [15] in both cases as the 
angle between the direction of potential crack extension and the intersection of the slip plane with 
the front plane of the sample. This will be explained more in detail in the next subsections devoted 
to the individual crack orientations. 

The values �b are determined for three different distances r from the crack front. In the case of 
slip systems oriented in the easy twinning direction, the maximum �twin is reached [11] at the 
distance /10r b= , where 10

0 3 / 2 2.482462 10  mb a −= = ×  is Burgers vector in bcc iron. As to �disl, 
its maximum lies [11] at the distance / 4r b= . Further, the values �b are calculated for / 2r b=  and 
r b= . 

Crack orientation (001)[110] 
Here we associate the Cartesian axes (x1, x2, x3) from Fig. 1 with the crystallographic directions 
[110] , [001] and [110]. According to MD simulations [4], the following slip systems will be 
considered: the oblique slip system <111>{011} (Fig. 2a), the inclined slip system <111>{112} 
(Fig. 2b) and the oblique slip system <111>{112}. Fig. 2 shows that both the oblique slip system 
{011} and the inclined slip system {112} create the angle � = 35.26439o since cos 2 / 3θ = . 

For the oblique slip system <111>{112} in Fig. 3, the angle � is zero. The blue arrows in Fig. 2 
and Fig. 3 denote the Burgers vector in bcc iron. 

  

 a b 
Fig. 2 a) Oblique slip system <111>{011}, b) Inclined slip system <111>{112} 

Fig. 3 Oblique slip system <111>{112} 
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The basic matrix of the elastic constants C for crack orientation (001) is given in [12]. The matrix 
S of elastic compliances can be obtained by inversion of C and used for Aij calculations according to 
procedure described e.g. in [10]. 

Plane strain (PD) conditions: The elastic compliances Aij for the crack orientation (001)[110] are 
A11 = 0.4470, A22 = 0.5698, A12 = -0.2664 and A66 = 0.8621 in units of 11 210  m /N− . Corresponding 
complex roots of Eq. 2 are 1 0.6167 0.8653iμ = +  and 2 0.6167 0.8653iμ = − + . The stress 
components 11σ , 22σ , 12σ  and 33σ  in the original coordinate system 1 2 3x [110], x [001], x [110]= = =
are determined by Eq. 1 and by the condition �33 = 0 and are described by Eq. 5 and Eq. 6 below. 

a) inclined slip plane {112} and oblique slip plane {011} 

11 22 12 330.872 , 1.207 , 0.223 , 0.715 .
2 2 2 2

I I I IK K K K
r r r r

σ σ σ σ
π π π π

= = = = (5) 

b) oblique slip plane {112} 

11 22 12 331.129 , , 0, 0.577 .
2 2 2

I I IK K K
r r r

σ σ σ σ
π π π

= = = = (6) 

Plane stress (PS) conditions: The elastic compliances for the crack orientation (001)[110] are  
A11 = 0.4475, A22 = 0.7409, A12 = -0.2767, A66 = 0.8621 in units of 11 210  m /N− . Corresponding 
complex roots of Eq. 2 are 1 0.6863 0.9032iμ = +  and 2 0.6863 0.9032iμ = − + . In the same way as 
above we determine the stress components from Eq. 1 and obtain for: 

a) inclined slip plane {112} and oblique slip plane {011} 

11 22 120.960 , 1.209 , 0.234 .
2 2 2

I I IK K K
r r r

σ σ σ
π π π

= = = (7) 

b) oblique slip plane {112} 

11 22 121.287 , , 0.
2 2

I IK K
r r

σ σ σ
π π

= = = (8) 

Inclined slip systems <111>{112}: To calculate bτ  for the inclined slip system [111] (112)  we 
introduce a new coordinate system 1x [111]′ = , 2x [1 12]′ = , 3x [110]′ = . The slip stress in the new 
coordinate system is 12 11 21 11 12 22 22 11 22 12 21 12( )b a a a a a a a aτ σ σ σ σ′= = + + + , where aij are the directional 
cosines of the transformation. It gives 

22 11 122( ) / 3 / 3bτ σ σ σ= − + . (9) 

Supposing that KI = KG, where 

1/20.912 MPa×mPD
GK = , 1/20.835 MPa×mPS

GK = , (10) 

Eq. 5 and Eq. 7 are utilized to evaluate the slip stress in the inclined slip systems <111>{112} under 
plane strain ( PD

bτ ) and plane stress ( PS
bτ ) conditions – see Table 1. 
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r PD
bτ  [GPa] PS

bτ  [GPa] 
b/10 16.97 13.13 
b/2 7.59 5.87 
b 5.37 4.15 

Table 1  Slip stress �b for the inclined planes {112} 

The inclined slip systems <111>{112} are oriented in the easy twinning direction, where the 
barrier for twin generation with the potential used is 9.3 GPatwinτ =  [11] but it can be decreased 
according to Rice correction sin cosc c Tτ τ θ θ→ + . In this case � = 35.26439o, the initial crack 

length in MD is 0 046 2 / 2l a= ×  and the critical applied stress corresponding plane strain and 
plane stress is 4.196 GPaPD

crσ =  and 3.842 GPaPS
crσ =  respectively. In MD the inclined twins 

appear only under fast loading when plane strain conditions prevail [4]. Taking in Eq. 3 
4.196 GPaPD

A crσ σ= =  we obtain 2.576 GPaT = −  and the corrected value of the critical stress is 
8.09 GPatwinτ = . From the comparison of the slip stress bτ  in Table 1 with the corrected value twinτ

we can see that the twinning at the crack (001)[110] is possible also according to LEFM, which is in 
agreement with MD results. 

Oblique slip systems <111>{112}: The new coordinate system is introduced according to Fig. 3, 
i.e. 1 2 3x [110], x [112], x [1 11]′ ′ ′= = = . After the coordinate and stress transformation we obtain the 
slip stress 23 2 3 22 32 22 23 33 33b i j ija a a a a aτ σ σ σ σ′= = = + . Due to the component 33σ , different 
expressions are valid for plane strain and plane stress: 

22 332( ) / 3PD
bτ σ σ= − , 222 / 3PS

bτ σ= . (11) 

Utilizing Eq. 6, Eq. 8 and KI = KG from Eq. 10, we obtain the slip stress for plane strain and 
plane stress conditions – see Table 2. 

r PD
bτ  [GPa] PS

bτ  [GPa] 
b/10 14.57 31.55 
b/2 6.52 14.11 
b 4.61 9.98 

Table 2  Slip stress �b for the oblique planes {112} 

The oblique slip systems <111>{112} in Fig. 3 are oriented in the easy twinning direction. Since 
Eq. 11 does not contain the stress component 11σ  there is no T-stress correction needed and the 
stress barrier for twin generation is 9.3 GPatwinτ =  from [11]. When comparing the value of �twin

with the values of �b in Table 2 we can see that twinning on the oblique planes {112} at the crack 
(001) is possible according to LEFM for both plane strain and plane stress conditions. Oblique 
twinning is more favorable for plane stress conditions, which is in qualitative agreement with MD, 
where this condition prevails under slow loading.  

Oblique slip systems <111>{011}: According to Fig. 2a, a new coordinate system is chosen as 
1x [011]′ = , 2x [21 1]′ = , 3x [1 11]′ = . After the transformation of the stress tensor, we obtain the slip 

stress 13 1 3 11 32 12 12 32 22 13 33 33b i j ija a a a a a a aτ σ σ σ σ σ′= = = + + . It leads to the following expressions 
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12 22 333 / 6 6 / 6 6 / 6PD
bτ σ σ σ= + − , 12 223 / 6 6 / 6PS

bτ σ σ= + . (12) 

Using Eq. 5 and Eq. 7 and KI = KG from Eq. 10, we obtain the slip stress for plane strain and 
plane stress conditions, see Table 3: 

r PD
bτ  [GPa] PS

bτ  [GPa] 
b/4 12.26 23.75 
b/2 8.67 16.79 
b 6.13 11.88 

Table 3  Slip stress �b for oblique planes {011} 

The stress barrier for dislocation emission in the slip systems <111>{011} is relatively low [15], 
14.5 GPadislτ = . A comparison of the slip stress bτ  from Table 3 with �disl shows that dislocation 

emission on the oblique slip planes {011} at the crack (001) is possible according to LEFM, namely 
under plane stress conditions that prevail in MD under slow loading [4]. Eq. 12 does not contain the 
stress component �11, hence the T-stress cannot influence the slip processes on the oblique planes 
{011}, similar to the oblique planes {112}. 

Crack orientation (110)[110]

In this case only dislocation emission on the inclined slip systems <111>{112} oriented in the hard 
anti-twinning direction was observed in MD simulations [4]. That is the reason why our stress 
analysis is focused only on the inclined slip system <111>{112}. Following relations are valid for 
the inclination angle in Fig. 4: 2tgθ = , � = 54.73561o. 

Plane strain (PD) conditions: The constrained elastic compliances are 11 0.5698A = , 

22 0.4470A = , 12 0.2664A = −  and 66 0.8621A =  in units of 11 210  m /N− . The corresponding complex 
roots of Eq. 2 are 1 0.5462 0.7664iμ = +  and 2 0,5462 0,7664iμ = − + . Note that in this case the fore 
mentioned values of Aij and ijμ  are the same as presented in [3]. 

The original coordinate system from Fig. 1 has been chosen as 1 2 3x [001], x [110], x [110]= = = . 
The corresponding stress components from Eq. 1 are 

11 22 12 330.483 , 1.304 , 0.075 , 0.250 .
2 2 2 2

I I I IK K K K
r r r r

σ σ σ σ
π π π π

= = = = (13) 

  
Plane stress (PS) conditions: The unconstrained elastic compliances are 11 0.7409A = , 

22 0.4475A = , 12 0.2767A = −  and 66 0.8621A =  in units of 11 210  m /N− . The complex roots from Eq. 
2 are �1 = 0.5333 + 0.7020i and �2 = -0.5333 + 0.7020i. From Eq. 1 we obtain corresponding 
stresses 

11 22 120.457 , 1.333 , 0.094 .
2 2 2

I I IK K K
r r r

σ σ σ
π π π

= = = (14) 

Inclined slip systems <111>{112}: The new coordinate system is introduced in the following 
way 1x [111]′ = , 2x [112]′ = , 3x [110]′ = . In the new coordinate system the slip stress is expressed as 
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12 11 21 11 12 22 22 11 22 12 21 12( )b a a a a a a a aτ σ σ σ σ′= = + + +  where aij are the directional cosines of the 
transformation. It leads to the relation  

22 11 122( ) / 3 / 3bτ σ σ σ= − − . (15) 

  
Fig. 4  Inclined slip system <111>{112} 

The critical values of the stress intensity for the crack orientation (110) [110] under plane stress 
and strain conditions are 

1/20.906 MPa×mPD
GK = , 1/20.886 MPa×mPS

GK = . (16) 

Supposing that KI = KG and using Eq. 14 and Eq. 15 we obtain the values of the slip stress �b in 
the inclined slip system <111>{112} at the crack (110) [110] under plane strain and plane stress 
conditions given in Table 4. 
  

r PD
bτ  [GPa]  PS

bτ  [GPa] 
b/4 16.61 17.12 
b/2 11.75 12.10 
b 8.31 8.56 

Table 4  Slip stress �b for inclined planes {112} 

Since the inclined slip systems <111>{112} at the crack (110)  are oriented in the hard anti-
twinning direction, where the stress barrier for twin formation is very high ( 27.9 GPatwinτ = , [3]), it 
is more favorable for the crack to emit dislocations because of the lower stress barrier 

16.3 GPadislτ = , [11]. Eq. 15 contains the stress component �11 and so we may use the correction by 
Rice 16.3 GPa sin cosdisl Tτ θ θ= + . The initial length of the crack (110)  is 0 066 / 2l a= ×  and the 
critical values of the applied stress under plane strain and plane stress conditions are 

4.138 GPaPD
crσ =  and 4.047 GPaPS

crσ =  respectively. It decreases the stress barrier for dislocation 
generation to about 15.1 GPadislτ = . When comparing �disl with the slip stress �b in Table 4 we see 
that dislocation generation at the crack front of the crack (110)  is possible according to LEFM 
under plane strain and plane stress conditions as well. It explains why dislocation emission in MD 
was observed [4] both under fast (plane strain prevails) and also slow loading (plane stress prevail). 

Note that real values of the slip stress presented in Tables 1 – 4 can be higher due to the nominal 
shear stress on {112} or {110} slip planes with large Schmid factor 0.47 and 0.41 respectively. 

223



17th European Conference on Fracture
2 -5 September,2008, Brno, Czech Republic

Summary 
Our results show that higher stress level at the crack (001) in bcc iron is on the oblique slip planes in 
comparison with the inclined planes. It is in a qualitative agreement with the theoretical study [16] 
where the stresses were calculated by the finite element method. Larger slip stress prevails under 
plane stress conditions both at the crack (001) and (110) . It explains why the slip processes in MD 
start at the free sample surfaces. As to the crack (110) , dislocation emission according to LEFM is 
possible on the inclined slip planes {112}, in agreement with MD simulations. 

The analysis is relevant for temperature of 0 K. At increased temperatures, a decline of the stress 
barrier �disl is expected due to the thermal activation (by about 20% in bcc iron at 300 K, [17]). The 
stress barrier for dislocation emission decreases also due to a fact that curved dislocations are 
emitted in 3D simulations [4] and also experiments since they have lower strain energy around. 
Both �disl [3] and �twin [18] come down also when normal relaxation occurs in the slip systems. 

The results are in a qualitative agreement with our MD simulations [4] and experiments [5-6].  
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