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Abstract. Due to its design, a single slewing bearing can sustain axial, radial and tilting moment 
loads. Therefore, one slewing bearing can often replace a bearing arrangement of radial and axial 
bearings. The design and manufacturing costs of construction can significantly be reduced, if such 
rotating connections are used. However, since the manufacturing process of large slewing bearings 
is significantly different than the one of standard rolling bearings, different computational model has 
to be used to determine their load capacity. A vector approach to the computation of static load 
capacity, and a simplified model for dynamic load capacity of a four contact-point slewing bearing 
is presented in the paper. Calculations have been done using the finite element method and 
analytical equations. 

Introduction 

Slewing bearings are machine elements which enable relative rotation of two structural parts, as 
shown in Fig. 1. They can accommodate axial (Fa), radial (Fr) and tilting moment loads (M) acting 
either singly or in combination and in any direction as shown in Fig. 1. The bearings are made of 
inner and outer rings, rolling elements and spacers, which prevent rolling elements from hitting 
against each other. The rings are typically available in one of three executions: a) without gears, b) 
with an internal gear, and c) with an external gear. Slewing bearings can perform both oscillating 
(slewing) and rotating movements. The rotational speed usually ranges from 0.1 to 5 rpm. They are 
widely used in construction of transport devices (cranes, transporters, turning tables, etc.), wind 
turbines production, and other fields of mechanical engineering. 

The procedure for calculation of the load capacity for standard rolling bearings is widely known 
and standardized. It is based on the Hertzian theory of contact and a vast number of tests, which are 
used to determine static and dynamic load ratings. Since the manufacturing process and operating 
conditions for large bearings significantly differ from those for standard bearings, the load capacity 

Fig. 1: Typical slewing bearing assembly and loading conditions 

1887



17th European Conference on Fracture
2 -5 September,2008, Brno, Czech Republic

of such bearings can not be determined precisely enough using the standardized procedure. 
The procedure for calculation of the load capacity is usually quite straightforward. First, 

maximum contact force on a rolling element has to be calculated, than this force is used to 
determine static and dynamic load capacity of a bearing. The calculation of load distribution and 
maximum contact force on a rolling element in a four contact-point slewing bearing is based on the 
Hertzian theory of contact and is well cowered in [1,2,3]. All these calculation procedures demand 
solving a system of rather complicated nonlinear algebraic equations. The approach presented in this 
paper is based on the same theory, but it uses vectors rather than scalar quantities to describe the 
geometry of the bearing. This somehow simplifies the mathematical description of the geometry and 
provides a good basis for the development of geometric models of double row bearings etc. The 
fatigue life calculation is based on strain-life approach. Alternating loading and plastic deformation 
of a bearing ring are taken into consideration. Similar, but a more complicated model has already 
been discussed in [4,5]. 

Theoretical basis 

Load distribution. The calculation of load distribution is based on the following assumptions: i) 
external loads acting on the bearing are in static equilibrium with the contact forces acting on the 
raceway (see Fig. 1), ii) the bearing rings are ideally stiff, thus taking into account only elastic 
contact deformations, iii) the procedure for calculation of contact forces is based on the Hertzian 
theory of contact, and iv) the internal ring is fixed, while external ring can move in x, y and z
directions, and rotate about x and y axes. 

The system is in static equilibrium when the outer ring is in such position that the bearing loads 
are in the equilibrium with the contact forces 1Q

�
 and 2Q

�
 acting on the top and bottom outer ring 

raceways as shown in Fig. 2. The directions of contact forces depend on the relative position of the 
inner and outer rings, which are defined by inner top and bottom (Cit and Cib, respectively), and 
outer top and bottom (Cot and Cob, respectively) curvature centers, as shown in Fig. 2. The directions 
of contact forces in initial position can be defined by unit vectors 1qe�  and 2qe� . After applying loads 
to a bearing an outer ring moves, hence its position can be defined by multiplying vectors of 
curvature centers’ initial positions by transformation matrix T: 

cotTcot rTr �� ⋅=,  and cobTcob rTr �� ⋅=, . (1) 

After applying the transformation the unit vectors can be written as: 

( ) ( )TcotcibTcotcibTq rrrre ,,,1
����� −−=  and ( ) ( )TcobcitTcobcitq rrrre ,,2

����� −−= . (2) 

Fig. 2: Geometry of a four contact-point rolling bearing and contact forces acting on a ball 
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By taking into consideration small rotations, such that ϕϕ ≈sin , and 1cos ≈ϕ , the transformation 
matrix can be written as: 
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where u, v and w designate translations in x, y and z directions, respectively, and �x and �y designate 
rotations about x and y axes, respectively. 

The magnitude of the contact forces depend on the contact deformations between the balls and 
the bearing raceways, which are directly connected to the relative movements of the bearing rings, 
i.e. the distance between the centers of inner and outer ring’s raceways. Thus, the contact 
deformations can be written as: 

( )Tcotcibcboi rrrr ,,1,11 22 �� −−−=+= δδδ  and ( )Tcobcitcboi rrrr ,,2,22 22 �� −−−=+= δδδ , (4) 

where rb and rc are ball and raceway curvature radii, indexes 1 and 2 designate the direction of the 
contact forces, and indexed i and o designate the bearing rings. From mathematical aspect the 
contact deformation in this case can be positive or negative, where positive value means that the ball 
and the raceway are not in the contact, thus, the contact force equals 0: 

( ) 0011 =≥δQ  and ( ) 0022 =≥δQ , (5) 

According to the Hertzian contact theory, the contact force can be expressed in terms of contact 
deformation and contact stiffness [1,2,3,4,5]. The contact stiffness depends on the geometry of the 
bodies in the contact and their elastic properties [4,5]. Since the geometry of the surfaces in the 
contact on the inner and outer raceway differs, the contact forces have to be calculated from the 
following equations: 

( ) ( ) 32
,11

32
,11,1,11 oioi kQkQ +=+= δδδ  and ( ) ( ) 32

,22
32

,22,2,22 oioi kQkQ +=+= δδδ , (6) 

where k1,i, k1,o, k2,i and k2,o stand for the adequate geometries and directions’ contact stiffnesses. The 
force and moment equilibriums can now be written as: 
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, (7) 

where indexes 1, 2, i and o represent the adequate direction and geometry and nb is a number of the 
rolling elements. 2,1qe�  are unit vectors as defined in equation (2), and 2,1qr

�  are defined as 

2,1,2,1 qcTcotq errr ��� ⋅+= . The unknown variables in equation (7) are u, v, w, �x and �y, introduced in 
equation (3). Since the moment about the z axis is 0, the equation yields a system of 5 equations 
with 5 unknown variables, which can be solved using a numerical algorithm for multidimensional 
root-finding. On the basis of the translations and rotations of the outer ring, which define contact 
deformations, as shown in equation (4), the contact forces can be calculated from equation (6). 
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Maximum contact force. Maximum rolling element contact force is obtained from the load 
distribution in a bearing. The maximum contact force Qmax is then: 

( )jQQ maxmax =  where bnj ...1= . (8) 

Static load capacity. The static load capacity depends on the maximum contact pressure acting 
on the inner ring, which has to be smaller than allowable contact pressure. The maximum contact 
pressure p0 is calculated from Qmax according to the Hertzian contact theory as [1,4,5]: 

ab
Qp
π2

3 max
0 = , (9) 

where a and b are semi axes of the contact area ellipses [1,4,5]. Thus, static load capacity is defined 
as a combination of external loads at which maximum contact pressure p0 is smaller than allowable 
contact pressure. 

Fatigue life. Fatigue life is defined as the number of cycles to initiate a crack. The calculation 
procedure is based on the strain-life approach [6,7]. The basis for the calculation of fatigue life is 
maximum contact force Qmax which is considered as maximum pulsating cycling load acting on an 
inner bearing raceway. Therefore, first Qmax is applied to determine maximum subsurface strains 
and stresses. Then the load is released, so that the plastic deformation of a raceway, and 
consequently residual stresses, are taken into consideration. Mean and alternating subsurface 
stresses and strains are then calculated as: 

( ) 2releasemax σσσ +=m  and ( ) 2releasemax εεε +=m , (10) 

( ) 2releasemax σσσ −=a  and ( ) 2releasemax εεε −=a , (11) 

where indices m and a designate mean and alternating values of strains and stresses, respectively, 
and max and release designate strains and stresses at Qmax and Qrelease, respectively. Considering the 
multiaxial stress the number of cycles to failure Ni, can be calculated according to the Tresca’s 
hypothesis of maximum shear deformation �amax [6,7]: 

( ) ( ) ( ) ( )c
ifp

b
i

qmf
eaaa NN

E
2'12

'
131max ⋅⋅++⋅

−
⋅+=−= εν

σσ
νεεγ , (12) 

where �a1, and �a3 are subsurface principal alternating strains with �a1 > �a3, �e and �p are elastic and 
plastic Poisson’s ratios, respectively, E is the Young’s modulus of elasticity, �f’ is fatigue strength 
coefficient, and b and c are fatigue strength and fatigue ductility exponents, respectively. �qm is 
subsurface equivalent mean stress which is calculated as [6,7]: 

321 mmmqm σσσσ ++= , (13) 

where �m1 > �m2 > �m2 are subsurface principal mean stresses. Subsurface stresses and strains are 
calculated at the critical point(s) below the surface. These can be at the depth of maximum stresses 
or strains or at the depth where material properties significantly change, e.g. at the depth of surface 
hardening etc. The Eq. (12) has to be solved numerically by using some iterative method. An 
approximate number of bearing revolutions to failure on inner ring N can be then calculated as [1]: 

( )( )00sin212 drnNN bi b
α+≈ . (14) 
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Practical example 

Bearing geometry and loading. A practical example was done on a large slewing ball bearing, 
produced by Rotis d.o.o. [8]. The bearing has a ball track diameter d0 = 766 mm, ball and raceway 
curvature radii rb = 17.5 mm and rc = 18.04 mm, respectively, a nominal contact angle �0 = 45° and 
radial and axial clearances cr = 0.05 mm and ca = 0.05 mm, respectively. The distance between the 
rolling elements is 5.5 mm. Important bearing dimensions are shown in Fig. 3a. 

For the purpose of the fatigue life calculation, a bearing was loaded with an axial force 
Fa = 290 kN and a tilting moment M = 290 kNm (see Fig. 1). These loads were then used to 
calculate the maximum contact force Qmax, which was considered as maximum pulsating cyclic 
load. Subsurface stresses and strains were calculated with the finite element analysis. The geometry 
of the computational model was prepared according to the Hertzian contact theory, i.e. the surfaces 
in contact had the radii defined as shown in Fig. 3b. The contact force was applied in the center of 
the ball, and all the nodes on the surface, where Qmax was applied, were constrained to have the 
same displacement in direction z (see Fig. 3b). Furthermore, the double symmetry was taken into 
consideration, and the bottom surface of the ring was fixed in x, y and z directions.  

Material properties. For the purpose of the calculation of both, static and dynamic load 
capacities, the rolling element was taken to be made of ideally elastic steel with the Young’s 
modulus E = 210000 MPa and the Poisson’s ratio � = 0.3. The bearing rings are made of steel 
42CrMo4 (similar to AISI 4142). Since the raceways are surface hardened their material properties 
vary with the depth. However, for the calculation of the maximum contact force, as described 
previously in this paper, the material properties of the raceways were taken to be ideally elastic with 

Fig. 3: Geometry and loading of a bearing: a) important dimensions, b) FEA model 

Fig. 4: Material properties of bearing rings’ raceways: a) hardness depth profile with the 
designation of layers, b) stress-strain curves for each layer 
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the Young’s modulus E = 207000 MPa, and the Poisson’s ratio � = 0.3. For the computation of the 
subsurface stresses and strains the raceways were modeled as 3 layers with different elasto-plastic 
material properties. The layers were defined on the basis of the hardness depth profile, shown in 
Fig. 3a. Due to the unavailability of the compressive material properties, the tensile material 
properties obtained from [9] were used. The stress-strain diagram for cyclic loading was designed 
for each layer using the Ramberg-Osgood equation [6,7]: 

'
1

'
n

aa
a KE

	


�

�

�+= σσε . (15) 

The material properties given in [9] are available only for a few values of hardnesses. Thus, the 
material properties for layers used in the finite element analysis were calculated by linear 
interpolation and extrapolation, and are shown in Fig. 4a, Fig. 4b and Table 1. 

Computational results and discussion 

Static capacity. Static capacity was calculated for the combinations of axial forces and tilting 
moments. Maximum allowed contact pressure was set to p0max = 3200 MPa. The diagram of static 
capacity, i.e. tilting moment versus axial force, is shown in Fig. 5a. Fig. 5b shows the contact 
pressure distributions in relation to the balls’ positions for some combinations of M and Fa, as 
designated in Fig. 5a. Each marker in Fig. 5b represents a rolling element. It can be seen that the 
contact pressure on the balls is always less than 3200 MPa, which was set as an allowed contact 
pressure. All pressure distributions are represented by lines with white and black markers which 
designate the contact pressure in the directions defined with the contact loads Q1 (white markers) 
and Q2 (black markers). Load case C1, with Fa = 0.0 kN and M = 369.4 kNm, is drawn with dashed

Layer Hardness �f' �u' K' �f' n' b c 
 [HV] [MPa] [MPa] [MPa] [/] [/] [/] [/] 

base 653 1511 1347 1173 1.3943 0.1054 -0.0827 -0.8653 
middle 471 1957 1738 1963 0.7707 0.0932 -0.0805 -0.8606 
surface 294 2425 2149 5808 0.1167 0.1550 -0.0782 -0.5539 

Table 1: Elasto-plastic material properties for layers with different hardnesses 

Fig. 5: Static capacity (a) and pressure distribution for some load cases (b) 
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line. It has nearly the same, but shifted for 180°, load distribution on both pairs of the raceways. 
This is expected since the tilting moment is present only. It can also be seen that not all the balls are 
loaded, but those that are, are loaded whether with Q1 or Q2, but not with both of them. Thus, all 
loaded balls are in contact with the raceways only in 2 points. The contact pressure distribution for 
the load case C2, with Fa = 901.3 kN and M = 351.8 kNm, is drawn with a solid line. It can be seen 
that the balls are always in contact with the raceways in the directions defined with the contact 
forces Q1 (white markers). Furthermore, some balls are in contact with the raceways even in the 
directions defined with the contact forces Q2 (black markers). Thus, in this case all 4 raceways are 
in contact with the balls. The pressure distribution for load case C3, where Fa =2523.7 kN and 
M = 0.0 kNm, is drawn with a dotted line. Since only axial force is applied, only a pair of raceways 
is in contact with the balls. Thus, the contact pressure distribution is constant everywhere on the 
raceways. Each ball is in contact with the raceways only at 2 points. 

Fatigue life. Fatigue life was calculated for bearing loading Fa =290 kN and M = 290 Nm which 
resulted in a maximum contact force Qmax = 50243 N. Radial load Fr was not taken into 
consideration. Contact force was calculated according to the previously mentioned theory, and 
subsurface strains and stresses were obtained from the finite element analysis done in ABAQUS. 
Linear brick elements with 8 nodes were used for the calculation. Equivalent mean stress �qm and 
maximum alternate shear deformation �amax were calculated according to the Eq. 10 to 13. Mises 
stress for loaded state �Mises (Qmax) and equivalent mean stress �qm are shown in Fig. 6a. Mises stress 
in unloaded state �Mises (Qrelease) represents residual stress, which appears because of plastic 

Fig. 6: Subsurface stresses (a) and strains (b) for the load Fa =290 kN and M = 290 kNm 

# P1 P2 P3

Layer surface middle base 
Depth [mm] 0.57 2.00 3.50 
�qm [MPa] -1811.3 -620.5 -317.7 
�amax [/] 0.00569 0.00347 0.00203

Ni [cycles] 1.853e8 1.036e8 6.179e8 
N [rev.] 6.085e6 3.403e6 2.029e7 

Fig. 7: Plastic strain and residual stress in 
relation to the depth

Table 2: Number of cycles to failure for 
different critical points
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deformation. This can be seen in Fig. 7, which also shows plastic strain magnitude 
�pl,magnitude (Qrelease). Maximum Mises stress in loaded and unloaded state and maximum alternate 
shear deformation appear approximately 0.6 mm under the surface, which is designated with the 
point P1 in Fig. 6. Furthermore, other interesting points are also at the borders between the layers 
with different material properties. These two points are shown in Fig. 6a and 6 b, and are designated 
with P1 and P3. The fatigue life (number of cycles to failure Ni) is calculated with the Eq. 12. If the 
critical point was on the border between two layers  the weaker material properties were chosen. 
The results of the fatigue life calculation are shown in Table 2. It can be seen that the shortest, and 
thus the critical, fatigue life Ni = 1.036e8 cycles (N = 3.403e6 revolutions) was calculated at critical 
point P2.

Conclusion 

A model for computation of static load capacity and fatigue life for large rolling bearings are 
presented. The calculation of static capacity incorporates calculation of static equilibrium of a 
bearing in combination with the Hertzian theory of contact to define the load distribution, maximum 
contact force, and allowable external loads. The calculation of fatigue life is based on strain-life 
approach, and it takes into consideration elasto-plastic material properties of the bearing rings. A 
practical example with real numbers is presented for demonstration. 

A presented approach seams to be fairly simple and yet provides a good basis for further 
development. In future more attention should be paid to the deformation of the bearing rings, which 
is known to have big influence on the load distribution [2]. Furthermore, currently the modeling of 
layers with different material properties in finite element analysis is rather coarse, and thus not 
precise enough. In future work this should be improved. The calculation of fatigue life could also be 
improved by taking into consideration kinematic hardening material properties. Moreover, the 
model should be extended by means of mechanics of fracture. 

However, the quality of final results largely depends on material data provided. Thus, 
experimentally determined material data should be used for best results. 
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