w1 17th European Conference on Fracture o °2
ii 25 September,2008, Brno, Czech Republic 53’5 X2

A mechanical model of the four-point end notched flexure (4ENF) test
based on an elastic-brittle interface

Stefano Bennati'?, Luca Taglialegne’® and Paolo S. Valvo'*®
'Department of Structural Engineering, University of Pisa, Via Diotisalvi 2, I-56126 Pisa, Italy
?s bennati@ing.unipi.it, "luca.taglialegne@gmail.com, °p.valvo@ing.unipi.it

Keywords: composite laminates, delamination, 4-point end notched flexure test, elastic interface.

Abstract. The paper introduces a mechanical model of the four-point end notched flexure (4ENF)
test used to assess the mode II interlaminar fracture toughness in laminated specimens under stable
crack-growth conditions. The model considers the specimen as an assemblage of two sublaminates,
partly bonded together by a deformable interface. Each sublaminate is modelled as an elastic
orthotropic beam, while the interface consists of a continuous distribution of normal and tangential
linearly elastic-brittle springs. The mechanical behaviour of the system is described by a set of
twenty-four differential equations, endowed with suitable boundary conditions. The original
problem is split into two sub-problems, considering separately the symmetric and antisymmetric
loads. The explicit solution to the problem is deduced for the internal forces and interlaminar
stresses. Moreover, the energy release rate and compliance are determined. The predictions of the
model are compared to theoretical and experimental results available in the literature.

Introduction

The separation between the laminae that make up a fibre-reinforced composite laminate, commonly
known as delamination, is a major failure mode for this class of materials. Similar decohesion
phenomena are observed also in thin films, glued joints, sandwich panels, laminated wood, layered
glass, and other layered materials in all fields of technology [1]. In general, delamination growth
involves simultaneously the three modes of crack propagation: opening (I), sliding (II), and tearing
(III) [2]. Therefore, specific laboratory tests have been developed for assessing interlaminar
toughness in each fracture mode and their combinations [3]. The end notched flexure (ENF) was the
first test proposed for measuring pure mode II toughness, but it suffers from unstable crack growth.
In order to obtain stable crack growth, Martin and Davidson [4] proposed the four-point end
notched flexure (4ENF) test, where the load is applied to the specimen through a loading platen

(Fig. 1).
d—F—d T
loading pins i P
loading platen

P =
hE X_ a _J‘ \spmmm A—t

. J

o

Figure 1 — Scheme of the four-point end notched flexure test.
In [4] the compliance and energy release rate (ERR) were determined resorting to a simple beam-

theory (SBT) model. Subsequently, Davidson and Sun investigated the effects of friction and
geometric nonlinearities by means of numerical models [5]. Actually, the SBT model of the 4ENF
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test turns out to be inadequate for describing some features of real specimens, for instance it
underestimates the compliance. In this paper, an enhanced beam-theory (EBT) model is introduced,
whereby the specimen is represented as an assemblage of two sublaminates, partly connected by a
deformable interface. The sublaminates are modelled as extensible, flexible and shear-deformable
beams. The interface is regarded as a continuous distribution of springs acting along both the
normal and tangential directions. Many similar interface models have been proposed in literature,
for instance for the DCB [6], ENF [7] and ADCB [8] specimens.
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Figure 2 — The enhanced beam model of the 4ENF test, with a detail of the elastic interface.

Formulation of the problem

The model. The model is schematically represented in Fig. 2. Let L =2/, H=2h, and B be
respectively the specimen’s length, thickness, and width (not shown in the figure); let a be the
delamination length. The lower sublaminate is simply supported at its ends, while two equal loads
of intensity P/2 act on the upper sublaminate at distances d from the mid-span section. Moreover,
we define the lengths b = L — a and ¢ =/ — d. A rectangular coordinate system Oxyz is fixed with the
origin O at the crack tip, the x-axis parallel to the axial direction of the specimen and the z-axis
pointing downwards. Let u, and w, denote the mid-plane displacements of the sublaminates along
the x and z-axes, respectively, and let ¢, be the (positive if counter-clockwise) cross-sectional
rotations (the subscript « assumes the values 1 or 2 to refer, respectively, to the upper and lower
sublaminates). Let Ex, E, and G, be the elasticity moduli of the laminate. The sublaminates are
connected by a deformable interface, consisting of a continuous distribution of normal and
tangential springs, whose elastic constants are k. and k-, respectively. The thickness of the interface,
t, is assumed to be as small as needed to be negligible in solving the problem.
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The differential problem. The equilibrium equations for the two sublaminates are

dN do dM
—%*+n,=0, —%+¢q,=0, —*+m,-Q, =0, a=1,2, 1
o e dx & Q (1)

where N,, Q,, and M, are the axial force, shear force, and bending moment, and

0, x<0, 0, x <0, 0, x<0, 2
n =-n, = =—q, = m, =m, =
TR g x20, TR\ go xz0. " T T \Bhrs2, x>0,

are distributed loads and couples related to the normal and tangential interfacial stresses,
o=k, Aw, t=k Au, (3)
which, in turn, are proportional to the transverse and axial relative displacements at the interface,
Aw=w, —w, Auzuz—ul—§(¢l+¢2). “
The constitutive laws for the sublaminates can be written as
N,=BA¢,, 0,=BCy,, M,=BD«,, a=12, Q)

where A=A, =Eh, C,=C,=5G,h/6, and D, =D, = E /12 are respectively the extensional,
shearing and bending stiffnesses, and

du aw dg
& =—9 =4 +—=, K,=—H%, a=12, 6
“ dx o = dx dx ©

are respectively the axial strain, shear strain, and curvature of the sublaminates.

By substituting Egs. 2-6 into Eq. 1, we obtain six differential equations for each of the four
intervals defined between the following values of the abscissa x:

x,=—a, xy=l-d-a=c—a, x.=0, x,=l+d-a=b-c, x,=L-a=b. 7
So, a set of twenty-four governing differential equations is obtained, endowed with appropriate

boundary conditions. The details of the analytical solution are here omitted and will be presented in
the full paper. In what follows only the solution strategy and the main results are illustrated.

Analytical solution

Solution strategy. The stated problem is conveniently split into two subproblems where the
symmetric and antisymmetric parts of the loads are applied separately (Fig. 3). It can be easily
proved that the symmetric load system only produces normal interfacial stresses, so it is related to
pure mode I fracture; conversely, the antisymmetric load system is responsible only for tangential
interfacial stresses, so it corresponds to pure mode II fracture. Actually, despite the 4ENF is
considered a pure mode II test, an additional mode I contribution to the ERR comes out naturally by
solving the proposed model. However, for material properties corresponding to ordinary composite
laminates, this mode I contribution turns out to be mostly negligible. Therefore, in what follows we
restrict our attention to the antisymmetric problem only (Fig. 4).
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Figure 3 — Splitting of the original problem into symmetric and antisymmetric sub-problems.
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Figure 4 — Antisymmetric system (upper sublaminate).

Internal forces. Integrating the governing set of differential equations with the boundary
conditions, we obtain explicit expressions for the internal forces in the sublaminates,

0, xelx,,x.],
Ny(x) = =N, () = { 2| ¢ (1= cosh yx) + | cooth yb -7 Jginh x|, xelxe,x,l (8)
8h ysinh yb

—Z—:{b—x—{c +M}(coshx—cothyb sinh;/x)}, xe[x,,x;],
e

for the axial forces, where y*> =8k_/E h,

1587



PP ff; 17th European Conference on Fracture o °2
ii 25 September,2008, Brno, Czech Republic 53’5 e
P
Za x €[x,,x5],
0(x)=0,(x)=9 0 xelxx,], ©))
P
_Zs )CE[XD,XE],
for the shear forces, and lastly,
g(aer)a x €[x,,xz],
BC, XE[XB,XC],
M,(x)=M,(x) = . (10)
] ’ L c(1+3coshyx)-3 ccothybfm sinhyx |, x €[xg,xp],
16 ysinh yb
f;{b —-x+ 3{c + Smh}/(b_c)}(cosh;/x —cothyb sinhyx)}, xe[xy,x;],
e

for the bending moments.

Interfacial stress. Hence, remembering Eqs. 1 and 2, we obtain the tangential interfacial stress,

El yccothyb—s%nhyc cosh yx —ycsinhyx |, xexq,x,],
Bh sinh b
(x)= )
—ﬁ{ 1—[yc +sinh y(b — ¢)](coth ybcosh yx —sinh yx) }, xelx,,x;].

In particular, at the crack tip

_ 3P yccoshyb—sinhyc
=0 8Bh sinhyb ’

7. =7(x)

Energy release rate. The energy release rate is immediately determined from Eq. 12

7.2 sinh yc
Gy =5~ = Gy gy (coth yb — _smhye

= ’=G-G, =G,
I 2k, ) I

yesinh yb
where

_9P(I-d) _ 9P
IL,SBT 16 Eszh3 16 EXBZhE;

is the energy release rate deduced from the simple beam-theory model.
Compliance. By integrating the following expression

_ P dc
2B da’
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where G is given by Eq. 13, we obtain the compliance of the specimen as

C=Cgr + Ciorr + Copenr » (16)
where
SBT =%[9a—4]+10d)] 17
is the compliance stemming from the simple beam-theory model,
o a7 cosh yb+ sinh yb ;62 sinhyc sinhyc ji?;y(b —c) .
met 8 E B ysinh yb
is the contribution due to the deformability of the elastic interface, and
_3U=d) (19)

* 10 G, Bh

is the contribution due to the shear deformability of the sublaminates.

Application

By way of illustration, we now apply the proposed model to the case of a unidirectional carbon
fibre/epoxy laminate, previously considered in an experimental study by Zile and Tamuzs [9]. Test
specimens were produced by gluing together three 1.2 mm thick sheets of Sika CarboDur® S 512
by means of a Bison polyurethane power adhesive. In particular, the specimens considered have
dimensions L =2/=160 mm, H=2h=4.2 mm, and B = 13.2 mm. The initial delamination length
is ap =55 mm and the distance of the loads from the mid-span section is d =40 mm. The elastic
moduli of the material are E, = 165 GPa, E, = E, =9 GPa, G,y =5 GPa= G,.

The values of the elastic constants of the interface should be assigned in order to account for the
localised deformation occurring at the crack tip, neglected by the SBT model. Generally speaking,
these constants are related to the elastic moduli of the laminate in the z-direction and to the
mechanical properties of the adhesive layers (if present). These constants can be estimated by
calibrating the analytical model with the results of experimental tests or numerical models. Here, we
have matched the compliance deduced from our model with that stemming from the tests and found
k=310 N/mm°. This value, obtained for a = ay, has then been adopted in all calculations.

Fig. 5 shows the internal forces in the upper sublaminate, as given by Eqgs. 8-10, as functions of
the abscissa, x, ranging over the whole specimen length from x, =—55 mm to xz = 105 mm. A load
P =500 N is here considered, slightly below the value measured at crack growth initiation [9]. The
axial force in the sublaminate, NV, is zero from the left-hand end of the specimen, x4, to the crack
tip, xc = 0 mm; it then becomes negative (the upper sublaminate is compressed, while the lower one
undergoes traction) and finally goes to zero at the right-hand end of the specimen, xz. A different
trend is observed for the shear force, O;, which is constant, equal to P/ 4 =125 N, from x, to the
application point of the first load, x5 =—15 mm,; it is equal to zero from x; to the application point of
the second load, xp = 65 mm,; it is again constant, equal to —P /4 =-125 N, from xp to xz. A more
complex behaviour is observed for the bending moment, A, which has a linear trend from x, to x;
it is constant, equal to Pc /4 =5000 N mm, from xz to x¢; it then shows a non-linear trend with a
local maximum at xp, where the second load is applied, and finally goes to zero at xz.
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Figure 5 — Internal forces in the upper sublaminate.
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Figure 6 — Energy release rate and compliance (circles represent experimental data [9]).

Fig. 6 shows the energy release rate, Gy, and the compliance, C, as functions of the delamination
length, a, as computed via Eqgs. 13 and 16, respectively. For the sake of comparison, the same
quantities as computed by the SBT model are also shown. The delamination length, a, ranges from
40 to 120 mm, corresponding to the crack tip moving from the left to the right load application
points. A constant load P =500 N is considered here. According to the EBT model, Gy turns out to
be a decreasing function of a, while for the SBT model it has constant value. So, the EBT model is
able to explain why, during a test, it is necessary to increase the applied load in order to keep the
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delamination growing, even if we consider Gu. as constant material parameter. Instead, if
experimental data are interpreted based on the SBT model, apparent R-curves are found where G
is an increasing function of a [9]. As far as the compliance is concerned, the figure shows the three
contributions present in the right-hand side of Eq. 16 and experimental data from [9]. The
contribution of shear deformability, Cshear, is very small and, moreover, is constant with respect to a,
so it is expected to have no influence on the ERR. The compliance computed via the SBT model,
Csgr, underestimates the experimental results which, instead, are very well matched by our model
including the contribution of the elastic interface, Cinters.
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Figure 7 — Load vs. displacement and delamination length (circles represent experimental data [9]).

The specimen’s response during a load test is summarised in Fig. 7, where the load, P, is plotted
against the load application point displacement, 6, and delamination length, a. In both figures, the
initial linear branches represent the response of the specimen prior to crack initiation. The curved,
increasing branches represent the stage of crack growth, as predicted by our model by setting
Gn= G =983.3 J/m?. This value is deduced from Eq. 13 for P=P.=540N, which is the
experimentally measured critical load. Contrary to the SBT model, the EBT model predicts an
increase in the applied load under constant Gy = Gy, and is in very good agreement with the tests.
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