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Abstract 
A finite element simulation of a blister test of a film bonded to a substrate and subject to 
plane strain condition is performed. The film is taking to be ductile, while the substrate is 
assumed to be rigid.  In the formulation, the interface adjoining the thin film and substrate is 
assumed to be the only site where cracking may occur. A traction separation law, with two 
major parameters: adhesion energy, 0Γ  and interface strength, σ̂ , is introduced to simulate 
the adhesive and failure behaviors of the interface between the film and the substrate. The 
Effects of the adhesion properties:  and 0Γ σ̂ , geometry and material properties of the film on 
the onset and growth of interface delamination are investigated. We suggest a method to 
extract the adhesion energy,  and the interface strength, 0Γ σ̂ , independently of how much 
the film deforms plastically, by fitting the predicted results of our model to experimental data.  

 

Introduction 
The blister test is widely used to measure the adhesive fracture toughness. External pressure 
applied on a film, initially bonded to a substrate, causes delamination at the interface. The 
crack propagates along the interface as the external pressure is increased. In the experiment, 
the pressure, the central deflection and/or the debonded length are measured. Various types of 
blister tests have already been suggested. For example, the one dimensional blister test 
corresponds to the case where a pressure is applied through a long rectangular window 
introduced in the substrate. In this case, plane-strain condition prevails. If instead a circular 
hole is introduced in the substrate, axisymmetric conditions are obtained corresponding to a 
different “axisymmetric” test. Other types of blister tests are described in Williams [1], such 
as shaft loaded (point loaded), island and constraint blister test. Williams [1] describes 
analytical solutions developed for these various geometries for materials that deform 
elastically. If plastic deformation also takes place, the analytical solutions predict much lower 
value as the plastic dissipation energy in the film is not accounted for.  

In this paper a finite element analysis of a blister test under plane strain condition is 
presented. We assume that the thin film exhibit plastic deformation and is bonded to a rigid 
substrate. We employ a traction separation law at the interface between the film and the rigid 
substrate to describe the delamination process. This model characterizes the adhesion 
properties at the interface, including adhesive fracture toughness and interfacial strength. The 
effect of material properties, geometry and interfacial properties on the onset and propagation 
of the crack along the interface is studied. 
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Problem Formulation  
We adopt the traction separation relation introduced by Needleman [2], to describe the 
fracture process along a plane of crack growth, and further developed by Tvergaards and 
Hutchinson [3], see Fig. 1. The maximum strength, in Fig. 1, is the adhesion strength σ̂ , 
whereas the adhesion energy, , is the area under the curve. The quantities, 0Γ 1λ  and 2λ  are 
shape parameters. The continuum properties of the materials are such that the film follows 
the finite plastic-strain  flow theory under plane strain conditions. We only focus on cases 
of a soft film on a hard substrate. For simplicity, the substrate is assumed to be rigid. 
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analytical solution for a two dimensional strip loaded with a uniform pressure. Williams [1] 
presented two solutions depending on whether the film is taken as a flexible membrane or 
sustain bending. For small angle and in the case the film behaves as a flexible membrane, the 
energy release rate is given by: 

6
7

=
pH
G  (3) 

where represent the uniform pressure and p H  is the maximum (central) deflection of the 
film. The bending solution for this case is: 

3
4

=
pH
G  (4) 
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FIGURE 4: Plastic zone profiles 
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developed at the “unstable” pressure for different interfacial strengths. It does reflect the 
trend of pH, i.e. it increases with increasing interfacial strength.  
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FIGURE 5: Dependence of the product of pressu
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Effect of Adhesion energy : 0Γ

The effect of adhesion energy on pH is shown in F
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FIGURE 6: Dependence of the product of pressure and central deflection, pH, on strain-
hardening exponent. 

 

Effect of the elastic modulus, E: 
The general trend that pH increases with increasing elastic modulus is readily seen in Fig. 7. 
With holding the yield stress fixed, reducing the elastic modulus implies increasing the ratio 
of yield stress to elastic modulus Ey /σ , which promotes plastic flow localization. Such 
instability is expected to cause a reduction in yσσ /ˆ  [3]. In the latter reference the most 
important influence on toughness due to an increase in Ey /σ  was attributed to the reduction 
in yσσ /ˆ . In this case the toughness is reduced.  
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mismatch. It is well known that mode mixity affect the toughness quite significantly, 
particularly when the contribution of mode two energy release rate to the toughness is 
considerable. We calculate the ratio tn δδ /  at the crack tip as a rough estimate of the trend of 
mode mixity. The result shown in Fig. 8 indicates that mode mixity effect is more significant 
with increasing elastic modulus.  
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FIGURE 8: Variation of δδ /  with E/σ . 
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Effect of the thickness, t: 
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the adhesion energy; that is just slightly above the elastic limit (pH/G =0.75). Analysis of the 
plastic zone profile shows that as the thickness increases there is an increase of the plastic 
zone size followed by a reduction for large thicknesses. This agrees well with the trend 
shown in Fig. 8. That is, although the pressure increases monotonically with the thickness, 
the central deflection, H, decreases progressively and for large thicknesses the product of the 
pressure with the central deflection, pH, reduces significantly. This can be related to the 
plastic zone constraint applied by the surrounding material, which is more significant for 
large thicknesses.  

 
Discussion 
Interface fracture resistance is well characterized by only two parameters: Adhesion energy 

 and interface strength 0Γ σ̂ . A good evaluation of the adhesion quality of an interface is, 
therefore, readily attained through few tests and computations. In particular, performing a test 
on a very thick film is very useful. Fig. 9 shows that pH approaches the elastic limit, given by 
equation (4), as the thickness becomes very large. Since the material is nearly elastic the 
energy release rate should correspond to the adhesion energy. Once the adhesion energy is 
determined a second test is performed with the actual film thickness. The applied pressure 
and the central deflection are measured. The adhesion strength is now readily determined by 
using the results presented in this paper. With reference to Fig. 3, which shows the 
dependence pH on the adhesion strength yσσ /ˆ , the measured pressure is compared against 
those plotted in the figure, and the corresponding value for the adhesion strength σ̂  is 
extracted. 

 

Conclusion 
The interface fracture resistance of an elastic-plastic film bonded on a rigid substrate is 
studied through modeling a blister test subject to the plane strain condition.  The adhesion 
quality is established by determining the dependence of the product of the pressure with the 
central deflection on geometry and material properties of the film and the interface adhesion 
parameters. We suggest that a combination of modeling and two experimental tests are 
sufficient to determine the intrinsic interface toughness: the adhesion energy and the 
interface strength 

0Γ
σ̂ . 
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