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Abstract

The Gurson-type model considered here deals with a nonlocal stress state which implies
nonlocal equilibrium conditions as well as nonlocal constitutive equations. However, it is
assumed that the kinematic equations of the theory of simple materials are still valid. The
nonlocal Gurson-type model has been implemented into the finite element program Abaqus
using its user material facility. The regularization behaviour of the model is discussed by
means of typical two dimensional localization problems.

Introduction

Continuum models, such as continuum damage models, which include softening fail if local-
ization of deformation occurs. After the onset of localization, the numerical results become
mesh dependent where the following well known tendencies become apparent: the finer the
chosen mesh the smaller the localization zone and if the mesh design shows a pronounced
mesh direction the localization zone follows this direction. The first trend mentioned above
can be used to show that this mesh dependence is spurious because it leads to physically
unreasonable results and to justify the formulation of continuum damage models within the
framework of higher order theories like gradient enhanced theories, micropolar theories or
nonlocal continuum theories, where only the nonlocal approach is considered here. This
topic has been widely discussed in the literature for example in Pijaudier-Cabot and Bazant
[1], de Borst et al. [2].

With the aim to simulate ductile damage and fracture a continuum damage model was
derived by Gurson [3] within the framework of simple material. This model was used in
Tvergaard and Needleman [4] to discuss simple localization problems where only the dam-
age variable has been formulated in a nonlocal way. Furthermore, a formulation of the
Gurson-model within a micropolar framework was derived in Gologanu et al. [5] as well a
gradient enhanced version of the model based on the nonlocal improvement proposed in [4]
has been discussed in Reusch [6].

On the basis of a micromechanical argumentation, a nonlocal Gurson-type model has
been proposed in M̈uhlich [7], Mühlich and Kienzler [8]. First, a brief review of the general
results based on the micromechanical argumention will be given. Then, these results will be
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applied to the Gurson-model and the numerical implementation will be described. Finally,
first results for simple localization problems will be discussed.

Brief review of the used nonlocal approach

In order to derive the nonlocal Gurson-type model, a body with volumeB under mechanical
loading is considered. It is assumed that the body consists of a material whose microstruc-
ture can be caracterized by the existence of statistically distributed voids and particles sur-
rounded by an elastic-plastic matrix material. Continuum theories for this kind of materials
whithin the framework of simple materials can be derived in general by means of the theory
of homogenization using the concept of the representative volume element, see for example
Nemat-Nasser and Hori [9]. However, this concept is only justified if the so-called Hill-
Mandel Lemma, see for example [9], is valid at almost every macroscopic point. If localiza-
tion of deformation occurs, this condition is no longer fulfilled because of the fact that strong
gradients of the macroscopic quantities can be observed, a originally regular distribution of
microstructural defects gets lost during the deformation history, etc.. If the classical theory
of homogenization is applied to solve such problems by means of continuum mechanics, a
so-called homogenization error is introduced. In order to corrrect this error, the total strain
rate of the theory of simple materials has been extended by a nonlocal term as follows

Ẇ =
∫
B

Σij(X)Ėij(X) +
∫
B

Ẇ (K)(X, X ′)dV ′

 dV (1)

whereX andX ′ are spacial coordinate vectors,Σij(X) and Ėij(X) are the stresses and
strain rates at a pointX.

Based on qualitative arguments and numerical calculations considering one dimensional
arrays of unit cells

Ẇ (K)(X, X ′) =
ϕ(X, X ′)∫

B
ϕ(X, X ′)dV ′ [Σij(X)− Σij(X

′)] Ėij(X) (2)

has been found in [7] to be an acceptable choice to correct the homogenization error. Al-
though the unit cell calculations were carried out assuming irregular void distributions under
homogeneous macroscopic loading conditions and linear elastic matrix material, equation
(2) is used here as a first approximation. With respect to the weight functionϕ(X, X ′) in (2)

ϕ(X, X ′) = Exp
(
−A||X −X ′||B

)
(3)

was chosen, whereA andB are material parameters related to the microstructure.
In the following it is assumed that the kinematic relations of the theory of simple materi-

als are still valid. The boundaryS of the body is divided intoSU andST where displacement
rates ˙̄U i are prescribed onSU and surface tractions̄Ti are prescribed onST . Application of
the Principle of Virtual Displacements then leads to the following result

∂

∂Xj

< Σij > (X) = 0 ∀X, X ∈ B (4)
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Ėij(X) =
1

2

(
∂U̇i(X)

∂Xj

+
∂U̇j(X)

∂Xi

)
∀X, X ∈ B (5)

< Σij > (X) nj(X) = T̄i(X) ∀X, X ∈ ST (6)

U̇i(X) = ˙̄U i(X) ∀X, X ∈ SU (7)

where the abbreviation

< α > (X) :=
1∫

B
ϕ(X, X ′)dV ′

∫
B

ϕ(X, X ′)α(X ′)dV ′ (8)

is used and thenj are the components of the unit normalvector onS. Because of the assump-
tions mentioned above, the kinematic relations (5) and the kinematic boundary conditions (7)
are identical with these of the theory of simple materials whereas the equilibrium conditions
(4) as well as the dynamic boundary conditions (6) are nonlocal. Due to the use of (8) it is
no longer necessary to point out explicitly if a variable refers to a pointX or X ′. Therefore,
this indication will be dropped in the following.

Proper constitutive equations are needed to complete the system of equations (4) - (7) as
discussed next. The nonlocal work theorem∫

B

< Σij > ĖijdV =
∫
S

< Ti > U̇idA (9)

with < Ti >=< Σij > nj can be obtained which shows that at every macroscopic point the
nonlocal stresses do work on the strain rates formulated as usual within the theory of simple
materials.
As discussed in [7] the nonlocal correction can be related to the microscopic surface trac-
tions and the displacement rates which acts on the outer surface of a considered volume
element. However, this volume element is no longer a representative one. Unfortunately,
this would lead to very complicate constitutive equations and therefore another approach is
proposed here. A volume element is considered, where neither linear displacement rates nor
constant tractions can be assumed on the outer surface of the volume element which means
that the Hill-Mandel Lemma is no longer valid. A model based on the theory of simple
materials assumes eighter linear displacement rates or constant tractions. This leads to rel-
atively simple constitutive equations by means of local macroscopic stressesΣij(X), strain
ratesĖij(X) and internal variables. However, such a model would give incorrect results.
On the other hand, another volume element with eigther linear displacement rates or con-
stant surface tractions is considered but according to (9) the nonlocal macroscopic stresses
< Σij > (X) and the local strain rateṡEij(X) are related to it. However, if instead of
Σij(X) the nonlocal stresses< Σij > (X) act together with the same local strain rates
Ėij(X) assuming validness of the Hill-Mandel Lemma, the internal variables of the model
must change. The argumentation above implies the following scheme for the calculation:
1. Calculation according to the theory of simple materials. 2. Calculation of the resulting
nonlocal stress state. 3. Replacement of the stressesΣij in the constitutive equations by the
nonlocal stresses< Σij > and solving the constitutive equations for known nonlocal stresses
in order to obtain the correction with respect to the internal variables.
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FIGURE 1. Schematic representation of the nonlocal correction

Application to the Gurson-model

The Continuum Damage Model considered here consists of the yield condition

Φ =

(
Q2

σY (ε̄)

)2

+ 2q1f
∗Cosh

(
1

2
q2

P

σY (ε̄)

)
− 1− q3(f

∗)2 (10)

with

Q =

√
3

2
Σ′

ijΣ
′
ij , P = −Σkk (11)

and evolution equations for the internal variables of the model. TheΣ′
ij in (11) are the com-

ponents of the deviatoric part of the Cauchy stress tensor andσY (ε̄) stands for an averaged
stress versus plastic strain curve of the matrix material. The fit parametersq1, q2, q3 in (10)
have been introduced by Tvergaard [10] into the model, originally proposed by Gurson [3]
to get a better agreement between the predictions of the Gurson model with the results ob-
tained by cell model calculations. To take into account the loss of stress carrying capacity
associated with void coalescence, the modified damage parameterf ∗ as a piecewise linear
function of the void volume fractionf

f ∗ =

{
f f ≤ fc

fc + κ(f − fc) f > fc
with κ =

f ∗
U − fc

fF − fc

(12)

was proposed in Tvergaard and Needleman [11]. The parameterf ∗
U is related toq1 by f ∗

U =
1/q1 if q3 = q2

1 is used. The void volume fraction where void coalescence starts is indicated
by fc and the void volume fraction at final fracture is denoted byfF .

Following Aravas Aravas [12], the normality rule can be used in order to obtain

∂Φ

∂Q
ĖP +

∂Φ

∂P
ĖQ = 0 (13)

with the two scalar plastic strain variablesEP andEQ. Here, nucleation of voids is not
considered. Therefore, from incompressible matrix behaviour follows

ḟ = (1− f)ĖP . (14)
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Finally, the evolution equation for the equivalent plastic strainε̄ is given by

˙̄ε =
−PĖP + QĖQ

(1− f)σY (ε̄)
. (15)

The Gurson-model described above has been implemented into the finite element program
ABAQUS Hibbit et al. [13] assuming small elastic strains and employing a predictor-corrector
method which will not be discussed here. More detailed informations can be found in Aravas
[12].

From the prediction obtained by the Gurson-model described above, the nonlocal stress
variables

P̂ = −1

3
< Σij > (16)

Q̂ =

√
3

2
< Σij >′< Σij >′ (17)

can be determined at every integration point. In order to calculate the nonlocal corrections
with respect tof , ε̄, EP andEQ the following system of equations has to be solved

0 =

(
Q̂2

σY (ε̄)

)2

+ 2q1f
∗Cosh

(
1

2
q2

P̂

σY (ε̄)

)
− 1− q3(f

∗)2 (18)

0 =
∂Φ

∂Q̂
ĖP +

∂Φ

∂P̂
ĖQ (19)

ḟ = (1− f)ĖP (20)

˙̄ε =
−PĖP + QĖQ

(1− f)σY (ε̄)
(21)

if the nonlocal yield condition (18) indicates plastic flow. Otherwise, the considered point
behaves linearly elastic. Application of the Euler backward integration scheme to system of
equations (18) - (21) finally leads to one nonlinear equation

(f − tf)(P̂
∂Φ

∂P̂
+ Q̂

∂Φ

∂Q̂
) + σY (ε̄)∆ε̄(1− f)2 ∂Φ

∂P̂
= 0 (22)

for ε̄, where the left-hand superindext indicates the value of the considered variable at the
start of the increment. BecausêP and Q̂ are known,f ∗ can be obtained from (18) as a
function of ε̄

f ∗ =
q1

q3

Cosh

(
1

2
q2

P̂

σY (ε̄)

)
−

√√√√q2
1

q2
3

Cosh2

(
1

2
q2

P̂

σY (ε̄)

)
+

Q̂2

σ2
Y (ε̄)q3

− 1

q3

(23)

andf andf ∗ are related by (12). The iterative loop consisting of the prediction by means of
the Gurson-model formulated within the theory of simple materials and nonlocal correction
can be applied until convergence with respect to the internal variables is achieved. However,
instead of an iterative algorithm an explicit scheme was chosen for the nonlocal correction.
Once the new stress state related to the theory of simple materials for the actual time incre-
ment is determined, the nonlocal averaging is carried out. The corrected values forf and
ε̄ determined by solving (22) are then used as start values for the next time increment. A
schematical representation of the nonlocal correction is shown in Figure 1.
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FIGURE 2. Finite element meshes and used denominations

Numerical example

In order to discuss the regularization behaviour of the model the problem shown in Figure
2 is considered. The calculations have been carried out with four different finite element
meshes varying the size of the four-node finite elements within the localization zone. The
finite element meshes as well the denominations used in the following can also be found in
Figure 2. According to the number of elements within the central part the denominations
15x15, 20x20, 25x25 and 30x30 are used in the following in order to refer to the different
meshes. The boundary conditions

u1(x1, x2 = 0) = u2(x1 = 0, x2) = 0
u1(x1 = H, x2) = u2(x1, x2 = H) = ū

(24)

have been prescribed and the displacementū was applied linearly with respect to time start-
ing from 0.0 mm up to7.5 mm. The Young modulosE = 200GPa, the Poisson number
ν = 0.3 and linear hardening with a plastic tangent modulusEt = 1GPa were used. An
initial void volume fractionf0 = 0.1 andfc = 1, κ = 1 have been assumed. All nonlocal
calculations have been carried out withA = 0.5 andB = 2.

Results and discussion

Together with the results of the calculations achieved with the nonlocal Gurson-type model,
the predictions obtained by the use of the local Gurson model for the meshes 15x15 and
30x30 are shown in the Figure 3 as well in Figure 4. The results by means of the reaction
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FIGURE 3. Reaction force inx1 direction related tōu.

force which corresponds to the global displacementū in x1 direction can be found in Fig-
ure 3. After the onset of localization, the local Gurson model predicts a rapid drop of the
reaction force where the gradient depends strongly on the mesh density. In contrast to these
results, the nonlocal model predicts independently of the mesh density almost identical load
- displacement curves. The regularization effect of the nonlocal Gurson-type model can be
demonstrated as well by means the equivalent plastic strain of the matrix material. In Figure
4, ε̄ is shown along the line D-D indicated in Figure 2 for the deformed configuration at
ū = 6mm. The local model predicts much higher values forε̄ and the specific values depend
on the mesh density whereas the nonlocal model predicts almost identical values whithin
the localization zone. Far from the localization zone the nonlocal model gives significantly
higher values for̄ε then the local model. It is supposed here that this effect appears due to
the choice of the nonlocal parametersA andB which represent a relatively large range of
nonlocal influence.
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