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Abstract 
A meso-mechanical finite element model for a thin adhesive layer is developed. The model is 
calibrated to experimental results where the adhesive layer is loaded in monotonically 
increasing peel or shear, cf. Andersson and Stigh [1] and Alfredsson et al. [2], and to an in 
situ SEM study of the fracture process. The purpose of the meso-mechanical finite element 
model is to facilitate the development of constitutive laws for adhesive layers.  

Ideas developed by Needleman [3], where structural continuum elements are bonded by 
cohesive elements are used as a basis for the finite element mesh. This thus enables micro 
cracks to propagate along the finite element boundaries.  

The simulations are found to be in good agreement with the experiments. The model is also 
capable of reproducing realistically the deformation observed in both peel [1] and shear [2] 
experiments.  

1. Introduction 
Methods to develop phenomenological constitutive models are today usually based on 
methods by which the parameters of a given model are determined by comparisons with 
experimental data. Classically, the experimental data are confined to simple loading cases; 
most often simple tension or, more exclusively, tension in combination with torsion. More 
recently, methods have been developed where the experimental response of a structure is 
compared to results of simulations. The constitutive parameters are then selected to achieve 
good agreement with the experiments. Both methods suffer from shortcomings. The classical 
method can only capture the behaviour in a limited number of load combinations. The more 
exclusive experiments are also expensive and time-consuming. The newer methods, based on 
the study of the response of a structure, most often appear to be non-sensitive to small 
variations of the parameters to be determined. Moreover, the parameters determined to 
achieve good results for a limited number of experiments might not be appropriate in general. 
Relevant to the present study, are the papers by Yang et al. [4,5,6]. In these papers, a 
constitutive model for an adhesive layer is assumed. The model contains a number of free 
parameters that are chosen to give good agreement with some experiments. 

Alternatively to these methods are the ones developed by modelling the relevant 
deformation and fracture mechanisms working on a microscopic length scale. The classical 
methods are based on the assumption that similar mechanisms work on the microscale as on 
the macro-scale as in Xia and Hutchinson [7]. In that paper, the shear stress – shear 
deformation relation for an adhesive layer is calculated from assumptions for the criteria for 
the nucleation and growth of micro-cracks. A shortcoming is that the authors have to, a priori, 
assume a distribution of nucleation spots for the micro-cracks. The criteria for crack growth 
and crack path selection are the same as used for macroscopic cracks in small scale yielding.  



The resulting constitutive response is not satisfying as compared with experimental results; 
as soon as the micro-cracks nucleate, they cease to be in equilibrium and propagate to a 
position close to the adherends. The resulting shear stress – shear deformation relation drops 
vertically. This is not seen in experiments. An unsuccessful effort to remedy this by including 
non-linear material is reported by Strand [8]. In experiments, micro-cracks initiate and grow 
in a stable manner, cf. Andersson and Biel [9]. The resulting shear stress vs. shear deformation 
relation shows a long stable tail where the stress gradually decreases to zero, cf. [2]. It should 
be noted that in some situations, the structural response is insensitive to the shape of the stress 
– deformation relation and only the area under this curve (i.e. the fracture energy) influence 
the response, cf. [1]. It is thus easy to make improper deductions on the role of the constitutive 
behaviour based on the response of specific structures. 

The purpose of this paper is to develop a meso mechanical finite element model to 
facilitate the development of constitutive laws for an adhesive layer. The idea is illustrated in 
Fig. 1. A representative volume element (RVE) is developed for which a number of 
parameters are to be determined. The RVE is subjected to pure peel (tension) and pure shear 
and the parameters of the model are determined by calibrating them to experimental results 
for these two special cases. In addition, once the parameters are determined, the RVE can be 
subjected to any load/unloading combination and the results can be used as additional data for 
the development of constitutive laws for the adhesive layer. 
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FIGURE 1. Mesomechanical strategy. Experimental data from [1], [9], [2] and 
[10] are used to calibrate the mesomechanical model. Simulations on the model 
are used in the development of a constitutive law for the adhesive layer. 

2. Mesomechanical model 
2.1 SEM-study 
To investigate the behaviour of the adhesive (Betamate XW-1044-3, DOW Automotive) on a 
meso scale, an in situ peel test is performed in a SEM. Two different substances are easily 
identified in the SEM-images. These are identified as an epoxy/thermoplastic blend and a 
mineral compound, cf. Fig. 2. The epoxy/thermoplastic blend appears slightly darker than the 
mineral in these images.  

The mineral occupies about 25 % of the volume. The mineral appears in clusters 
surrounded by the polymer blend. Thus, the polymer acts as a matrix and the mineral clusters 
as particles in a composite. The in situ study is set up using a small T-peel specimen with an 
adhesive layer thickness of 0.2 mm. Due to the design of the T-peel specimen, the adhesive 



layer experiences almost pure tension. Due to a relatively high stiffness of the adherends, 
initiation of micro cracks occurs along a considerable part of the adhesive layer. The micro 
cracks appear to initiate in and around the more brittle areas, i.e. the areas identified as the 
mineral. Specifically, micro-cracks are observed to initiate in the larger clusters of mineral. 
After initiation and growth inside the clusters, the micro-cracks propagate through the epoxy 
matrix and coalesce to form macroscopic cracks, cf. Fig 2b. When the micro-cracks have been 
initiated, the mineral cluster dissolves into an extremely complex structure, cf. Fig 3.  
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FIGURE 3. A SEM-image of the defo
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3 Numerical model 
tions, the RVE is assumed to be in a state of a plane stress. 

d in the finite element mesh; the continuum is 
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FIGURE 4. Schematic of identification of different substances and a FE-model. 

3.1 Mate
tic material with linear isotropic hardening.  
 2 GPa, where the superscript ep is used to 

To simplify the calcula
Considering the constraints of the adherends, it appears more realistic to use a state of plane 
deformation. However, in this initial study, numerical problems prevented us from achieving 
convergent results in plane deformation. The macroscopic deformation of an adhesive layer is 
typically of the same order of magnitude as the thickness of the layer, cf. [1] and [2]. Thus, it 
is important to consider large deformations in the numerical analysis. However, the local 
strain is not large and small strain formulations for the constitutive behaviour of the 
continuum elements are assumed adequate. 

Two different types of elements are use
delled with triangular three-node elements. To enable crack propagation four-node 

interface elements are coupled between all the continuum elements. Thus, cracks are free to 
nucleate and propagate along the finite element boundaries. The number of initiation sites and 
the available propagation directions are obviously limited. However, if a large number of 
elements are used, this limitation is a minor problem. Different constitutive properties are 
used for the elements in the polymer blend and in the mineral, both for the continuum 
elements and for the interface elements. The interface elements at the interfaces between the 
mineral clusters and the polymer blend is given the same constitutive properties as the 
elements in the polymer blend.  

 

 

 

 

 

rial model for the continuum elements 
The polymer blend is modelled as a linear elas
Young’s modulus for the polymer blend is Eep =
denote the polymer blend; superscript m is used for the mineral. The yield strength, σ ep

Y , is set 
to 50 MPa and the hardening modulus is assumed to be 100 MPa. The mineral compound is 
modelled as linearly elastic with Young’s modulus Em = 15 GPa. Poissons ratio is set to 0.4 
for all continuum elements. 

3.2 Material model for the interface elements  

The properties of the interface elements are modelled us
Hutchinson [11] as a basis. In this model, t

ing the model of Tvergaard and 
he fracture process is characterised by the 

  

phenomenological traction vs. generalised separation relation, cf. Fig. 5. 

 



 

 

 

 

 

 

 

σ(λ) 

σ̂  

λ λ1 λ2 1
FIGURE 5. Traction vs. generalised separation relation for the interface elements.  

The curve is defined by three parameters, a maximum stress   and the two shape-
parameters λ1 and λ2. The generalised separation λ is defined by 
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where nδ  and tδ  are the relative displacements in peel and shear respectively. The 
superscript c indicates the critical separation. A potential Φ(λ) is introduced through 
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The peel stress, σn, and the shear stress, σt, are derived from the potential, viz.  
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Thus, the model contains five parameters, 1 2 ˆ, , , andc c
n tλ λ δ δ σ , that fully describe the 

behaviour of an interface element. 

In the experiments, unloading from severely deformed and deteriorated states is observed. 
Thus, it is necessary to adjust the Tvergaard-Hutchinson model to allow for different 
behaviour in loading and unloading. This is done by introducing a damage variable, ω, in the 
interface model, i.e. 

( ) ( )
1

ˆ, 1 λσ λ ω ω σ
λ

= −  (4) 

With a monotonically increasing λ, ω evolves according to 

( ) ( )11
ˆ

σ λλω λ
λ σ

= −  (5) 

where σ(λ) is given in Fig. 5. Note the difference between eqs. (4) and (5). Equation (4) is 
valid for all load cases whereas eq. (5) is only valid if λ is monotonically increasing. Now, 
introduce a so-called damage stress ( ) 2 2kλ λΩ = , which controls the growth of damage in 
the model. Also, introduce a damage criterion 

( ) ( ), gω ωΘ Ω ≡ Ω − ≤ 0  (6) 



The inequality is changed to an equality if damage is to evolve. The second term, ( )g ω , is 
a damage resistance function which controls the damage evolution. By the use of eq. (6) a law 
of damage evolution can be derived according to  

( ), 0gω ω µ µ∂Θ
Θ Ω = Ω − = = − = −

∂Ω
& & && & &  (7a,b) 

The dissipation of this model is given by ωΩ & , cf. Alfredsson and Stigh [12]. Thus, 0µ ≤&  
in order to achieve a thermodynamically consistent model. The condition for damage 
evolution at the end of a time step is given by 

( )1 1 1 0n n ng ω+ + +Θ = Ω − =  (8) 

Expanding g(ω) in a Taylor series yields 
1 1 0n n n ng G µ+ +Θ = Ω − + ∆ =  (9) 

where d
dω

=
gG . Denote the two first terms of Θ by 

1 e 1 1 1 e 0n n n n n ng µ+ + + +Θ = Ω − ⇒ Θ = Θ + ∆ =G  (10) 

During damage evolution, . In this case, eq. (10) yields an approximate value of 
∆µ from the condition , viz.  
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If , unloading takes place and the values of µ and ω are kept constant. For the 
present model, the evolution of ω can be calculated directly. If damage grows, i.e. if 

, λ increases beyond any previously attained value. In this case, ω is determined 
directly by eq. (5). The parameters are here chosen by trial and error. The numerical 
performance of the model is very sensitive to the choice of the parameters. Table 1 gives the 
parameters used in this study. 

1 e 0n+ Θ ≤

1 e 0n+ Θ >

TABLE 1. Parameter values. 

Substance λ1 λ2
c
nδ  [µm] c

tδ  [µm] σ̂  [MPa] 

Polymer blend 0.0018 0.015 50 55 23.1 

Mineral 0.0001 0.008 80 70 17.2 
 
4. Experiments vs. FE-simulations 
The parameters are calibrated to experiments in peel, cf. [1] and [9] and shear, cf. [2] and [10]. 
A video-microscope has been used to study the deformation process in the experiments 
reported in [9] and [10]. Special consideration has been taken to imitate the behaviour of these 
experiments when choosing the parameters.  

The RVE used in the simulations consists of 15342 continuum element and 22845 
interface elements. The model contains more than 90 kDOF. 

 



4.1 FE simulations and peel experiments 
In the simulation of the behaviour in peel, the boundary conditions are for x = 0, l: ux = 0 and 
for y = 0: ux = uy = 0. For the remaining boundary y = h: ux = 0 and uy = w. By taking the 
average of the nodal stresses in the y-direction at the upper boundary, the macroscopic stress 
σ is determined. 
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FIGURE 6. RVE in peel and shear. 

Results from a typical experiment and a simulation are given in Fig. 7a. The result appears 
reasonably good. The simulation is also capable of mimicking most of the features observed 
in the experiments. 
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FIGURE 7. Comparisons between experiments (solid curves) and simulations 
(dashed curves). (a) Peel/DCB-results, (b) Shear/ENF-results. 

 

4.2 FE simulations and shear experiments 
In the simulation of the behaviour in shear, the boundary conditions are periodic in the 
horizontal direction i.e. ux(0,y) = ux(l,y). For y = 0: ux = uy = 0 and for y = h: ux = v and uy = 
constant with zero resultant force in the vertical direction. Figure 7b shows that the FE-
simulation is in good agreement with the experimental results. Note that the same RVE and 
parameters are used in the simulations in peel and shear. 

 
 



Discussion and Conclusions 
A basis for the development of a computational method for the prediction of the constitutive 
properties of adhesive layers has been presented. The basic idea is to use interface elements 
on the boundaries of the continuum elements. The adhesive is modelled on the meso level 
using a RVE, which is designed by the use of SEM-images. Due to the use of SEM images, 
the RVE provides a realistic material representation.   

Several approaches have been made where interface elements are placed along a 
predefined crack propagation path. These approaches will in general not lead to a realistic 
behaviour, cf. Mishnaevsky and Schmauder [13]. However, in [3], the crack propagation path 
is not predefined but the continuum mesh is structured in such a way that it will lead to a 
longer crack path and a larger loss of energy. In the present paper the cracks have an almost 
entirely free crack propagation path, due to the unstructured mesh. 

The FE-simulations are in good agreement with the experimental data. The model is also 
capable of reproducing realistically the deformation observed in both peel [1] and shear [2] 
experiments. In the future, a parameter study will be performed to achieve the optimal 
parameter settings. 
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