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Abstract 
The influence of the interface bonding strength on brittle crack propagation in bi-material 
structures is investigated. In this study a crack is set at the vertex of the interface between two 
joined dissimilar materials. Competition between several possible crack trajectories is 
endeavoured, paying special attention to the effect of thermo-elastic and residual stresses on 
crack propagation.   

Introduction 
Bi-material structural components are commonly encountered in a variety of engineering 
applications, such as wear resistant materials, microelectronic devices and composite 
laminates used in aircraft structures. During the manufacturing process, interphases having 
material properties intermediate between those of the material constituents are developed 
[1,2]. As a result, the mechanical behavior and the overall performance of the component are 
not limited by the bulk properties, but by the interface characteristics. In fact, according to 
Linear Elastic Fracture Mechanics, if a system consisting of two edge-bonded elastic wedges 
of different materials is considered (see Fig. 1), a stress-singularity is present at the vertex of 
the bi-material interface, even in the absence of a re-entrant corner [3]. The power of this 
stress-singularity depends both on the elastic bi-material mismatch parameters [4], and on the 
wedge geometry. From the practical point of view, the existence of such a stress-singularity 
means that microfailure processes due to initial defects are likely to occur at the interfaces.  

 

 
FIGURE 1. Scheme of two edge-bonded elastic wedges. 

 

Furthermore, an additional complexity arising in many interface problems is provided by 
significant residual and/or thermo-elastic stresses present in the region close to the interface. 
The residual stress field is due to the bonding process and it is caused by the different 
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expansion coefficients of the two constituent materials and by the elastic mismatch. On the 
other hand, many engineering components experience thermal loads during their life and 
significant thermo-elastic stresses have to be taken into account [5]. Hence, the applied 
thermal loads, together with the mechanical forces acting on the structure, may result in a 
crack enucleation and growth with initial position close to the bi-material interface.  

By considering an initial crack which enucleates from the bi-material interface, the 
problem of brittle crack propagation in bi-material structural components is addressed. The 
external load is not set a-priori in the numerical analyses, but it is computed at each step by 
enforcing the condition for crack propagation [6]. In this way, stable or unstable crack 
propagations can be easily controlled. To be more specific, the conditions for pure 
delamination along the bi-material interface, or for deflection into one of the material regions, 
are given by a strain energy release rate based failure criterion. In other words, we assume 
that the crack propagates in the direction where it is more suitable to propagate from an 
energy point of view. As a result, the competition between the different failure modes or 
crack trajectories can be readily recognized and expressed in terms of the mechanical 
properties of the interface. In this framework, thermo-elastic and residual stress fields are 
superimposed to the mechanical ones and their effect on brittle crack propagation is carefully 
investigated. Detailed numerical examples concerning engineering problems are provided.

Singular points in joined dissimilar materials under mechanical and 
thermal loading 
According to Linear Elastic Fracture Mechanics, a stress singularity exists at the vertex of the 
interface between two joined dissimilar materials (Fig. 1). Investigations on the order of the 
stress singularity arising from this type of joint geometry under mechanical and thermal 
loading were provided by Bogy [3], Bogy and Wang [7], Hein and Erdogan [8], and Yang 
and Munz [9], among others.  

According to Williams [10], it is possible to assume, for the i-th subregion (Fig.1), the 
following separable form for the biharmonic stress function  Φi:  
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where λj and fi,j are referred to as eigenvalues and eigenfunctions, respectively. 

The summation with respect to index j is introduced in Eq. (1), since it is possible to have 
more than one eigenvalue for each problem. For 0<Reλj<1, the biharmonic condition requires 
fi to be of the form: 
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where Ai,j, Bi,j, Ci,j and Di,j are undetermined constants. For the particular case of Reλj=1, the 
stress term becomes independent of the distance r and, according to Yang and Munz [9], an 
additional term has to be added to Eq.(1): 
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The stress field can be computed from Eqs.(1) and (3) as follows: 
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Introducing the relationships between strains and displacements in polar coordinates and 
the constitutive equations, the displacements under mechanical and thermal loadings can be 
computed (see [9] for more details). It is important to notice that the displacement field 
depends both on the shear moduli Gi, and on the product between the thermal expansion 
coefficients αi and the temperature excursion ∆T to which the elements are exposed. Imposed 
boundary conditions permit then to compute the order of the stress-singularity and to 
determine the singular and the regular stress components. For this problem, four stress-free 
conditions along the free edges and four stress and displacement continuity conditions across 
the bi-material interface have to be taken into account: 
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This eight linear equations system can be solved by splitting it into two groups of 
equations. Firstly, by considering the terms which depend on the distance r, a system of 8 
equations in 9 unknowns Ai,j, Bi,j, Ci,j, Di,j, and λj, can be symbolically written as: 

0v =Λ ,                                                                                                                     (6) 
where Λ denotes the coefficient matrix which depends on λj, and  represents the vector 
which collects the unknowns A

v
i,j, Bi,j, Ci,j, Di,j. A nontrivial solution to the system exists only 

if the determinant of the coefficient matrix vanishes. This yields to a characteristic equation 
which has to be solved for eigenvalues λj which are in general complex. Seeking for 0 < Reλj 
< 1, the order of the stress-singularity and the corresponding singular stresses can be 
computed. They are independent of thermal loading and, for different geometrical and 
material combinations, asymptotic solutions were early provided by Bogy [3].  

Eventually, a second system can be obtained from the terms in Eq. (5) which are 
independent of r. The solution to this system allows to obtain the coefficients Ei,0, Fi,0, Gi,0, 
Hi,0 of the regular stresses which have to be superimposed to the singular stress field. As 
observed by Munz et al. [11], in the case of vanishing singular stress exponent, i.e. for λj=1, 
the regular term tends to infinity due to the difference in the thermal expansion coefficients of 
the two materials. This result implies that the regular term can be extremely significant and it 
can provide an important contribution to the interface normal stress distribution for cases of 
weak material mismatch leading to λj≅1.  

Competition between thermo-elastic and residual stresses 
 
Multi-layered elements used for mechanical and electronic applications are usually subjected 
to nonuniform temperature distributions during their life and the solution of a preliminary 
steady-state thermal problem is required to estimate the temperature distribution within the 
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structural elements. Residual stresses are instead generated during the bonding process and 
are usually caused by a uniform temperature distribution. From the theoretical point of view, 
it is important to notice that the problem of residual stresses induced by an hot bonding of 
two material components during the fabrication process can be considered equivalent, 
neglecting the algebraic sign, to the problem of thermal stresses induced by a temperature 
increase in a bonded two-material structure. As a consequence, the problem of residual 
stresses induced in the elemnts by a temperature increase ∆T can be studied as the problem of 
thermal stresses due to a temperature decrease –∆T. As a result, the competition between 
residual and thermo-elastic stresses is favorable, since these stress fields can be completely 
compensated when the bi-material elements are subjected to the same temperature excursion 
and distribution as that applied during fabrication. This implies that the critical conditions for 
these components are usually attained during the first stage of their life, when residual 
stresses are prevailing. On the other hand, only a partial compensation can be obtained when 
the temperature distribution during the normal use does not match exactly that due to the 
bonding process. 

Competition between crack deflection and delamination at a bi-material 
interface 
 
When a crack grows at the interface between two different materials, two possibilities may 
occur during propagation: to continue to grow along the interface giving rise to a pure 
delamination, or to move out of the interface into one of the two material regions. In the 
sequel we assume that the interface, like a continuum, presents a resistance to cracking, i.e. a 
critical interface fracture energy Γi

IC. According to He and Hutchinson [12] and to He et al. 
[13], the conditions for pure delamination along the bi-material interface, or for deflection 
into one of the material regions can be stated using a strain energy based failure criterion. By 
considering the ratio between the strain energy release rate for delamination and the critical 
interface fracture energy, Γdel /Γi

IC, and the ratio between the strain energy release rate for 
crack deflection into one of the constituent materials and the corresponding critical strain 
energy release rate, Γdef /ΓIC, the crack continues to propagate along the interface if: 

IC
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IC
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otherwise it deflects into one of the neighborhood materials.  
This failure criterion has been implemented in the FEM code FRANC2D by Ingraffea and 

Wawrzynek [6], developing the following propagation algorithm: 
(1) for each material region around a crack-tip: 
     • find the direction of the maximum tensile circumferential stress; 
     • remesh to add a finite crack increment in this direction; 
     • solve the resulting finite element equations; 
     • normalize the global change in strain energy with respect to the crack increment 
       and compute the ratio with the critical energy release rate. 
(2) For each interface around the crack-tip: 
     • extend the crack a finite distance along the interface; 
     • solve the resulting finite element equations; 
     • use the relative opening and sliding at the crack-tip to determine the load angle 
        and the critical strain energy release rate; 
     • normalize the change in strain energy with respect to the crack increment and 
        find the ratio with the critical strain energy release rate. 
(3) The direction of propagation is that with the largest associated ratio of the rate of energy 
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      release to the critical rate of energy release. 

Numerical examples 
In this section the competition among several crack trajectories of an interface crack is   
investigated. As a typical example, we consider a bi-layered element composed of a hard 
metal substrate and a wear-resistant external layer, widely used for rock drilling as detailed 
described in [14]. A steel support completes the tool and mechanical properties of the 
constituent materials can be found in [15,16]. Due to the difference in thermal expansion 
coefficients and mechanical properties of the two layers, as the temperature decreases after 
bonding, a residual compressive stress is set up in the external layer and a residual tensile 
stress in the hard metal substrate. This residual stress increases when the temperature falls, 
whereas when the temperature rises, as it occurs during drilling, high tensile stresses are 
induced in the external layer and a reduction of residual stresses should be expected.  

In order to verify these assumptions, a uniform temperature distribution due to bonding is 
superimposed to the nonuniform temperature distribution experienced during the normal use 
of the tool. The former distribution assumes a temperature variation equal to ∆T=–500°C, 
whereas the latter is estimated by performing a preliminary steady-state thermal analysis with 
a temperature increment equal to ∆T=500°C localized at the tool tip. Residual tangential 
stresses along the interface, τRES, thermo-elastic stresses, τTH, and total tangential stresses are 
depicted in Fig. 2.  

 

 
FIGURE 2. Tangential stress along the interface. 

 

The parameter x/c denotes the relative position along the interface and the intersection of 
the interface with the free-edges of the bi-layered element is obtained for x/c=1. The 
tangential residual stress at the interface is symmetric and reaches its maximum value at the 
free ends. Thermo-elastic stresses present an opposite sign with respect to the residual ones 
and a lack of symmetry due to the nonsymmetric temperature distribution in the tool can be 
observed. At the free edges the residual stress prevails with respect to the thermal one and, 
thanks to the competition, a reduction by one third of the residual tangential stress occurs. As 
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previously discussed, the stress is globally negligible in the remaining points along the 
interface (see also the dotted line in Fig. 2). 

After this preliminary analysis, a crack whose initial length is set equal to that of existing 
defects is introduced at the vertex of the interface between the two joined layers. An impact 
force is then applied at the tip of the tool in the vertical direction. Experiments showed that 
this loading condition can produce either a crack deflection into the external layer, referred to 
as gross fracturing, or a pure delamination along the interface [14].    

From numerical investigations, we observe that only a competition between delamination 
or deflection into the external layer are real possibilities, whereas deflection into the hard 
metal is not permitted due to its high fracture toughness. Furthermore, we observe that brittle 
crack propagation along the interface can occur only if the interface toughness is less than 
approximately one third of that of the external layer. Assuming the limit case of a weak 
interface, brittle delamination is simulated and the deformed meshes are shown in Fig. 3. The 
magnitude of the external load is not set a-priori, but it is computed at each step by enforcing 
the condition for crack propagation [6].  

 

 
FIGURE 3. Deformed meshes corresponding to three steps of delamination. 

 

 
FIGURE 4. Deformed meshes corresponding to three steps of gross fracturing. 
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On the other hand, by assuming a normal interface, i.e. the interface toughness has an 
intermediate value with respect to those of the neighbourhood materials, a deflection into the 
external layer is simulated. Deformed meshes during crack propagation are shown in Fig. 4.  

In both case studies, the nondimensional external load for crack propagation, Pc/Pc,0
GF, is 

computed at each step and depicted in Fig. 5 in terms of the nondimensional crack length, 
a/amax. Critical loads for crack propagation in the absence of thermo-elastic and residual 
stress fields are also shown in the same diagrams for each failure mode (see dashed lines). In 
these pictures Pc,0

GF represents the critical load for crack propagation and it corresponds to 
the initial crack length a0 for the gross-fracturing failure mode with mechanical load only. 
Parameter amax denotes the maximum crack length for each failure mode corresponding to a 
broken external layer for gross fracturing, and to the total interface length in the case of pure 
delamination, respectively. It has to be noticed that unstable crack propagations take place in 
both failure modes, since the external load has to be reduced at each step. In spite of the fact 
that the crack trajectories with or without thermo-elastic and residual stress fields are 
approximately the same, the critical load for crack propagation is significantly influenced by 
their presence. In the case of gross-fracturing it is reduced by a factor of two, whereas that 
corresponding to delamination is slightly increased.  

 

 
(a)                                                                     (b) 

FIGURE 5. Nondimensional critical load vs. nondimensional crack length:                      
(a) delamination and (b) gross fracturing. 

 

Eventually, the competition between the failure modes can be studied by comparing the 
evolution of the critical loads corresponding to the total stress field depicted in Figs. 5a,b. As 
previously observed, for this particular case study gross-fracturing prevails with respect to 
delamination in the case of normal interfaces. On the contrary, when the interface is 
extremely weak, the non-dimensional critical load for delamination is less than that for gross 
fracturing and crack propagation along the interface should prevail with respect to a crack 
deflection inside the external layer.   

Discussion and conclusions 
The mechanical behavior of advanced structures composed by several materials is strongly 
influenced by damage phenomena occurring at the interfaces. These problems have a 
considerable importance in traditional structural elements, as well as in new-conception 
structured materials used in electronic devices and cutting tools. Therefore, tailoring of well-
bonded, durable interfaces between the constituent materials has become a critical concern. 
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Durability is a primary issue since important factors, such as temperature and residual 
stresses to which the material is subjected, can degrade interfacial adhesion as well as the 
properties of the constituent phases. From the asymptotic analysis presented in the first 
section, it is well-known that stress-singularities occur at the vertex of the interface between 
two joined dissimilar materials. These singularities lead to crack enucleation in brittle 
materials and little attention has been spent in the Literature to the problem of crack 
propagation. In the present paper the influence of the interface bonding strength on brittle 
crack propagation in bi-material elements is addressed. Competition between different crack 
trajectories, or failure modes, was deeply investigated. For the presented case study, it is 
shown that thermo-elastic and residual stresses play a fundamental role and have to be 
carefully taken into account in order to have a satisfactory description of the real 
phenomenon. 
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