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Abstract 
The behaviour of stationary cracks under combined electrical and mechanical dynamic 
loading conditions is important for many applications of piezoelectrics. To calculate 
electromechanical fracture quantities for structures with arbitrary shape and time dependent 
boundary conditions, numerical methods need to be used. In this paper a finite element 
algorithm is presented, which is based on an explicit time integration rule to solve the 
transient coupled electromechanical boundary value problem for a linear piezoelectric 
continuum. Furthermore numerical methods for the calculation of fracture quantities, for 
instance the dynamic electromechanical J-Integral, are described. Results for a plane crack 
problem under different loading conditions are presented and discussed. 

Introduction 
In order to improve the functional features and the mechanical properties of piezoelectric 
structures fracture mechanics concepts are gaining growing interest. The macroscopic failure 
of piezoelectric ceramics is mainly determined by growth of microscopic cracks. Here, 
mechanical and electrical field intensity factors and energy release rates play an important 
role as fracture quantities. However, the dynamic aspect in fracture mechanics of these 
structures is rarely investigated. The behaviour of stationary cracks under combined electrical 
and mechanical dynamic loading conditions is important for many applications of 
piezoelectrics, though. For instance in ultrasonic transducers the excitation frequencies are 
close to or above the lowest eigenfrequency of the structure, so that dynamic effects cannot 
be neglected. In other applications, such as sensors and actors smart ceramics often underlie 
electrical or mechanical impact loading. Therefore, methods have to be developed allowing 
the calculation of dynamic field intensity factors and energy release rates. 

To calculate electromechanical fracture quantities for structures with arbitrary shape and 
time dependent boundary conditions, numerical methods such as the Finite Element method 
(FEM) need to be used. At present, commercial FEM codes are available for static 
piezoelectric analysis, only. Moreover, fracture mechanical tools as e.g. the 
electromechanical J-Integral are not implemented. Therefore, an explicit finite element 
program has been developed containing tools, allowing an efficient calculation of dynamic 
fracture quantities. 

Finite element algorithm for piezoelectric problems 
The constitutive equations for a piezoelectric continuum are given by: 

σ ε= −ij ijkl kl kij kc e E , (1) 
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i ikl kl ik kD e Eε κ= + , (2) 

where ijσ is the stress tensor, is the electric displacement vector and , ,  are the 
elastic, piezoelectric and dielectric material tensors, Parton and Kudryavtsev [1], Tiersten [2], 
Qin [3], Zhang [4]. The strain tensor 

iD ijklc kije ikκ

klε and the electric field vector  are defined as: kE

( , ,
1
2kl k l l ku uε = + )

k

, (3) 

,kE ϕ= − . (4) 

Applying Hamiltons principle the corresponding coupled electromechanical boundary 
value problem can be described in a weak form: 

( ) (
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D E u u b u dVdt t u dSdtδ ρ δ σ δε δ ω δϕ δ ω δϕ− − + − + −∫ ∫ ∫ ∫&& ) =  (5) 

Here and ib vω denote prescribed body forces and body charges. With s
it  and sω applied 

external stresses and charge densities acting on the boundary S are considered. Since the 
variations of the independent variables iuδ  and δϕ  are arbitrary inside the volume V and on 
the boundary , the Fundamental Lemma of variational calculus yields the Euler-Lagrangian 
equations, i.e. the equilibrium conditions of elastodynamics 

S

, 0ij j i ib uσ ρ+ − =&&  (6) 

and electrostatics 

, 0v
i iD ω− =  (7) 

as well as the natural boundary conditions on the surface  S
s

ij j in tσ = , s
i iD n ω= − , (8) 

with  as the outer unit normal vector to S . In terms of a finite element approximation 
Eqn. (6)-(8) can be written as two equilibrium equations: 

in

uu u b s pϕ+ + = + +mu k u k φ f f f&&  (9) 

u bϕ ϕϕ+ = + +k u k φ q q qs p , (10) 

where m denotes the mass matrix and uuk , uϕk and ϕϕk are the mechanical, the dielectrical 
and the piezoelectrical stiffness matrices. The vectors u  and  are the unknown nodal 
displacements and electrical potential, respectively. The right hand side of Eqn. (9) and (10) 
comprises the nodal vectors of prescribed loads and charges. 

φ

An explicit time integration scheme is used, to solve the system of differential equations. 
With the central difference integration operator: 
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Eq. (9) can be rewritten: 
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Here u and u&&  are the velocity and the acceleration, respectively. The superscript n  refers to 

the increment number and 

&
1
2

n ± to the midincrement values. The electrical potential 1n+φ is 

calculated from Eq. (10): 
1 1 1 1n n n n n

b s p uϕϕ ϕ
+ + + += + + −k φ q q q k u 1+ . (13) 

For the element mass matrices a lumped formulation, Wriggers [5], is used, whereby the 
inversion of m at the beginning of every increment becomes trivial. Thus the explicit 
algorithm shows a very high computational efficiency. Problems arise from the limited 
stability of the algorithm and from numerical effects, which occur in the simulation of high-
speed dynamic events. Therefore, appropriate procedures for time step control associated 
with artificial viscosity need to be used, ABAQUS [6], Wilkins [7]. 

 

Fracture mechanics of piezoelectrics 
Mechanical and electrical intensity factors, energy release rate 

The asymptotic 1 r  behaviour of stresses ijσ and electric displacements in the vicinity of 
a crack tip can be described in terms of the stress intensity factors 

iD

IK , IIK , IIIK and the 
electric intensity factor , Pak [8], Sosa and Pak [9]: IVK
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 (14) 

Here r and θ denote the distance from and the angle around the crack tip, see Fig. 1, ( )ijf θ  

and ( )ig θ are angular functions characterising the asymptotic near field distribution. Another 
value describing the loading of the crack is the energy release rate, which is defined as the 
change of the total energy  related to an incremental growth of the crack area : Π A∆

0
lim

A

dG
A d∆ →

⎛ ⎞∆Π Π
= − = −⎜ ⎟∆⎝ ⎠ A

. (15) 

The energy release rate and the intensity factors are related by a generalised Irwin 
relationship: 

{1 , , , ,
2 M N MNG K K Y M N I II III IV= = }

, , , T
M II I III IVK K K K K=

 (16) 

where and ( ) MNY  is the Irwin matrix, depending on the material 
tensors , ,  and the orientation of the crack with respect to the material axes, Suo et 
al. [10]. 

ijklc kije ikκ
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FIGURE 1. Crack tip coordinates and integration contours. 

 

Dynamic piezoelectric J-integral 
The J-integral is a very powerful method for the numerical calculation of the energy release 
rate. For an elastic piezoelectric material the J-Integral vector can be written as an integral 
along the closed contour around the crack tip, see Fig. 1, Cherepanov [11]: Γ

( ) ,0
limk kj ij i k jJ H T u D Eδ σ
Γ→

Γ

⎡= + − +⎣∫ k jn d⎤ Γ⎦ . (17) 

Here H denotes the electrical enthalpy density, which is given by: 

(1
2 ij ij i iH σ ε= − )D E . (18) 

T means the kinetic energy density, the unit vector normal on jn Γ pointing outward of the 
enclosed domain and kjδ is the unit tensor. Regarding only the 1x -component of , which 
has the physical meaning of G  for two-dimensional problems and restricting to the case of a 
stationary crack, then Eq. (17) reduces to: 

kJ

( )1 1 ,10
lim j ij i j jJ G H u D E n dδ σ
Γ→

Γ

= = − + Γ∫ 1

dA⎤⎦

. (19) 

To evaluate in a finite element analysis, Eq. (19) conveniently is transformed into an 
equivalent domain integral using the virtual crack extension technique, Abendroth et al.[12], 
Hellen [13]. Following this method: 

1J

( )1 ,1 1 1 , ,1ij i j j j i i
A

J u D E H q u u qσ δ ρ⎡= − − +⎣∫ && , (20) 

where q is an arbitrary smooth weighting function, which has the value one on the inner 
contour  and zero on the outer contour Γ 0Γ , see Fig. 1. Eq. (20) holds for traction and charge 
free crack surfaces and omitting body forces and charges as well as property gradients. It can 
be easily implemented in a finite element program or in a postprocessor calculating the 
integral numerically. Due to the path independence of the J-integral the produced results are 
highly accurate and rarely sensitive to the quality of the numerical solution in the vicinity of 
the crack tip singularity. A drawback is that the separation of the stress intensity factors and 
electric intensity factors from  is not straightforward. J
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Near tip solution and extraction of intensity factors 

The intensity factors can be calculated from the near tip fields of the displacements and 
the electric potential

NK iu
ϕ . On the crack faces (θ π= ± ) it is: 

(2 0i
MN N

u rY K r
φ π
⎛ ⎞

= ± →⎜ ⎟
⎝ ⎠

) . (21) 

Considering just Mode-I/Mode-IV loading conditions the field intensity factors are calculated 
from displacements and electrical potentials on the positive crack, see e.g. Kuna [14]: 
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where , e , and  are constants of the Irwin matrix. In terms of a finite element analysis 
Eq. (22) can be evaluated using  and 

Tc κ

2u+ ϕ +  at the nodes on the crack face close to the tip. 
This makes it a very easy method for the calculation of the intensity factors. However, it has 
to be stated that the results strongly depend on the quality of the finite element solution, 
which in most cases is not very accurate in the vicinity of the crack tip. 

Combination of the near tip solution and the J-integral 

In order to increase the accuracy of the aforementioned method, it is combined with the J-
integral. Taking the ratio IV IR K K= from the near tip solution, Eq. (22), and the energy 
release rate G  from the J-integral method, inserting both in Eq. (16) yields: 
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κ

=
− +

= ⋅

%

% %

e . (23) 

This is a very simple method to separate the intensity factors from the J-integral, leading to 
acceptable results in many cases. However, calculations have also shown that the method is 
not reliable in general and sometimes produces unstable results.  

Permeability of the crack 
For electromechanical crack analyses the limited permeability of the crack, i.e. the influence 
of a dielectric medium inside the crack, needs to be considered. The models of the 
impermeable and the fully permeable crack can be regarded only as simple approximations 
representing upper and lower bounds for the electrical energy penetrating the crack. The 
finite element realisation of the limited permeable crack for static problems is based on an 
iterative procedure, Wippler et al. [15], Hao and Shen [16], McMeeking [17]. However, this 
method proved to be not favourable for crack dynamics. For the problems analysed here a 
special technique is used, meshing the inside of the crack with dielectric capacitor elements 
of variable length depending on the local crack opening.  

 

Numerical examples 
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The subject under consideration is a central through-thickness crack of the length 2a in a 
rectangular sheet, made of barium titanate, see Fig. 2. The material is poled in positive x2-
direction. At the opposite ends of the bar mechanical and electrical loads 0 ( )tσ  and  are 
applied following a step function with the time constant . For the finite element 
discretisation a two-dimensional model of quadrilateral elements with linear shape functions 
is used. Because of symmetry only a quarter of the plate had to be modelled. On the ligament 
symmetry boundary conditions  and 

0 ( )D t
61 10 sτ −= ⋅

2 0u = 0ϕ =  are applied and along the vertical symmetry 
line holds .  1 0u =

 
FIGURE 2. Rectangular bar containing a central through-thickness crack. 

In Fig. 3 the calculated J-integral is plotted vs. time. The first curve (dotted line) stands for 
the described model without any further modifications. The crack is modelled as 
impermeable. As can be seen the J-integral first decreases for t τ≤  remaining at approx. the 
same level till t ≈  4.0·10-6 s. During this period the electrical field, which emerged 
immediately into the body dominates the behaviour of the crack. Regarding the 
displacements at the crack face in this state a positive  is found, meaning a non-physical 
penetration of the crack faces. After that period the stress wave induced by 

2u

0σ  and  at the 
bottom of the model has reached the crack, what results in a steep increase of the curve with a 
maximum at t ≈ 9.0·10

0D

-6 s. After that the curve decreases again. To avoid the penetration of 
the crack faces at the beginning of the simulation, contact boundary conditions have to be 
introduced. This can be realised very simply for the symmetric model, allowing only negative 
displacements  at the crack face. Furthermore, the condition 2u 0ϕ =  has to be set for all 
nodes along the crack face as long as 2 0u = . The results of the simulation under these 
conditions are represented by the dashed line in Fig. 3. Here, the J-integral remains at zero for 
t < τ, since the closed crack is invisible (fully permeable) for the electric field. When the 
crack opens a steep drop of the curve is observed, caused by the sudden change to the 
boundary conditions of an impermeable crack. As time develops the curve shows a similar 
behaviour as the dotted line. The third curve (solid line) in Fig. 3 represents the case if the 
crack is modelled as limited permeable in combination with the contact conditions at the 
crack face. Compared to the dashed curve the steep drop at t ≈ 4.0·10-6 s is not found here 
because of the variable permeability in the interior of the crack. However, if the limited 
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permeable crack model is used the crack faces can not be treated as charge free and 
consequently Eq. (20) is not valid anymore. To get correct results surface integrals (line 
integrals for 2D-problems) along the crack faces need to be accounted for in the calculation 
of J. These have not been implemented in the program yet. 

  
FIGURE 3. J-integral vs. time for different crack configurations. 

 
FIGURE 4. KI vs. time for different load cases. 

In Fig. 4 the stress intensity factor KI is plotted vs. time for three different load cases: 
(i) , (ii) 0 ( )D t 0 ( )tσ , (iii) 0 0( ), ( )D t tσ . The crack is modelled as limited permeable with crack 
face contact for these calculations. KI is computed from the near tip field solution, Eq. (22). 
As can be seen all curves are zero before t = τ showing a maximum at t ≈ 9.0·10-6 s. The 
highest value of KI is reached under electrical and mechanical loading conditions. It is worth 
to be noted that contrary to the according static problem for a pure electrical load a nonzero 
KI exists. Regarding the electrical mode, see Fig. 5, a nonzero occurs for all load cases. 
This effect is caused by the variable permeability inside the crack, depending on the actual 
crack opening and is found for static calculations, too. In Fig. 4 and 5 the results for the 
impermeable crack are given as dashed lines. As expected an influence is found only for K

IVK

IV. 
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FIGURE 5. KIV vs. time for different load cases. 

Conclusions 
An explicit finite element program for the investigation of dynamic piezoelectric problems 
has been developed. Basic fracture mechanical tools are implemented into the code. First 
results have been presented for impermeable and limited permeable crack configurations, 
exposed to dynamic electromechanical step loading. 
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