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Abstract 
One of the most efficient ways to improve the fracture toughness of ceramics is to reinforce 
them by large volume fraction of bonded metal particles (e.g., Krstic [1]; Evans and 
McMeeking [2]). The toughening effect of the metal particles was attributed to both crack 
trapping and bridging. While the bridging effect has been relatively well documented, the 
crack trapping effect is still somewhat inadequately understood. In contrast to crack bridging, 
the effectiveness of crack trapping increases with the debonding toughness of the 
particle/matrix interface. When the tough heterogeneities are equiaxed particles, adhesive 
strength becomes a very critical issue. Specifically, some optimum interface debonding is 
needed to remove the geometric constraint and allow the particles to deform plastically in a 
significant part of their volume. The aim of the contribution is to confront the measured 
fracture toughness values obtained on borosilicate glass matrix composites with theoretical 
predictions. 

 

Introduction  
The toughening of brittle solids through the inclusion of ductile phase is generally 
accomplished extrinsically, i.e. through the development of crack-tip shielding from crack 
deflection and/or crack bridging by intact ductile particles in the crack wake, e.g. [3,4]; such 
mechanisms invariably lead to rising R-curve behaviour (crack growth toughening) but can 
result in susceptibility to fatigue failure as they have a tendency to degrade under cyclic 
loading [3]. In the case of ceramics, glasses or intermetallics for high-temperature 
applications, the choice of reinforcements is limited to the refractory metals such as Mo, Nb, 
Cr, V and W due to their high melting temperature, although many of these refractory metal 
reinforcements do not exhibit significant ductility at room temperature [5]. For the effect to 
produce an improvement in the fracture toughness, the quality of the particle/matrix interface 
becomes of great importance because it strongly influences the particle deformation pattern. 
Specifically, some optimum interface debonding is needed to remove the geometric 
constraint and allow the particles to deform plastically in a significant part of their volume. 

 

Theoretical models 
When cracks encounter spherical obstacles and are trapped by them, they begin probing the 
strength and toughness of the interface while commencing the bowing process. Any 
perturbation of the crack tip away from the equator of a spherical obstacle subjects interface 
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to an opening mode of stress intensity. Thus any time during additional remote loading, a 
crack front has the option of following whatever path offers the least local resistance over, 
around, or through the obstacles. When the obstacles are cylindrical, relatively little KI is 
applied to the interface if the rods are perpendicular to the crack plane, and the full level 
trapping-induced toughness is easily reached.  

When the crack encounters an array of strongly bonded particles, the crack front will first 
stably penetrate between the particles, and, after the critical penetration depth is reached, 
overcome the trapping effect. In this process additional crack growth driving force is required 
due to the non-uniform distribution of the stress intensity along the verge of propagating. If 
the ceramics-metal bonding is strong, after the crack front overcomes the crack trapping 
effect, the metal particles will be left behind and bridge across the two crack flanks. 
Eventually with the increasing of the applied stress intensity the particles will be broken. 
Bower and Ortiz [6] have conducted numerical simulations of the cleavage front of crack that 
is trapped by tough, perfectly bonded particles. Their numerical results are closely 
approximated by the expression  
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where is the maximum remote energy release rate required to bypass a single row of 
particles,  stands for the matrix toughness and f for the volume fraction of particles. After 
the crack front overcomes the crack trapping effect, the particles will be left behind and 
bridge the crack. Bower and Ortiz [7] suggest that for bridging particles to form, the particles 
toughness, , should exceed  ≥ [2.1+4.8(3f/4π)

trap
ICG

ICG

part
ICG IC

part
IC GG / 1/3]2. If this is not the case, the 

crack cut through the particles and the maximum possible toughness of the composite is 
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If the particle toughness is comparable to that of the matrix, very little improvement in 
toughness is observed. Xu et al. [8] have shown that if the particles debond from the matrix 
the crack front bypasses a row of particle more easily leaving debonded particles in its wake. 
They have also shown that interfacial debonding considerably reduces the effectiveness of 
crack trapping and the improvement in toughness is then well approximated by 
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where  is the interface debonding toughness. Note that the prediction according to Eq. (3) 
holds if , 0.2 ≤ G

dG

d
part
IC GG 4> d/GIC ≤ 1 and 0 ≤ f ≤ 0.19. The crack front repeatedly overcomes 

the crack trapping effect, leaving debonded particles in its wake. Several hundreds rows of 
bridging particles may form in this way. A three dimensional analysis of this process would 
be prohibitively expensive, thus a simple two dimensional model is usually accepted to 
estimate the influence of bridging particles. Provided that the bridging zone is much longer 
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than the spacing between particles, it can be idealised as a distribution of pressure σ0(∆) 
acting on the crack faces and thus reducing the energy release rate uniformly over the 
propagating crack front. ∆ denotes the crack opening displacement. One may calculate this 
reduction using the J integral as 

( )  valuecriticalfor  standing    with , c
0

0 ∆∆∆σ=∆ ∫
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The effective toughness of composite follows then as . To evaluate 
, one must find the cohesive law σ

bridg
IC

trap
IC

eff
IC GGG ∆+=

bridg
ICG∆ 0(∆). A number of attempts have been made to 

analyse the plastic stretching of a plastically deformable particle within elastic medium, using 
slip line fields [2], finite elements [9] and analytical approximations [10]-[12], all with the 
objective of relating the stress/crack opening relation σ0(∆) to the uniaxial plastic flow 
properties of the ductile material. The fact that partial debonding can increase the total plastic 
work dissipated in particles was found in model experiments by Ashby et al. [13]. A simple 
approximate analysis for the effect of partial debonding on the work of separation was 
proposed by Bao and Hui [10] based on assuming circular neck shapes and using Bridgman 
approximation for the stress in the neck. Tvergaard [9] performed a detailed finite element 
analysis of ductile particle debonding during crack bridging in ceramics. He employed plastic 
strain controlled model of debonding. His numerical results have shown that the average 
tensile stress obtained by Bridgman approximation in [10] is underestimated and thus the 
numerical estimate of the dissipated plastic work in ductile particle is higher than that 
obtained by rigid-plastic model [10]. The rigid-plastic model can be improved using 
suggestions made by Rubinstein [11]. Specifically, the particle is assumed to develop a neck 
of parabolic profile which is a simplified version of that obtained be Tvergaard using finite 
element computations, see Fig. 1. 
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FIGURE1: Scheme of bridged crack and particle deformation shape.  

The current radius of the bridging cross section of a particle r, the vertical coordinate of 
the intersection of the parabolic neck with the undisturbed spherical portion of a particle ypn 
and the half of the crack opening displacement at the particle site ∆/2 within the bridging 
zone are then related by 
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where parameter κ specifies the curvature of the chosen parabolic profile in the coordinate 
system x’,y with its origin in the particle centre ( ) RrRyRx +κ= 22' . κ is associated with 
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the strength of the particle/matrix interface. The requirement of incompressibility of the 
particle provides then the additional condition for determination of r, ypn and ∆ 
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The vertical coordinate of the intersection of the parabolic neck with the undisturbed 
spherical portion of a particle ypn can be eliminated between Eqs. (5) and (6). The resulting 
equation can be solved numerically to obtain the normalised bridging cross section r/R as a 
function of the normalised crack opening displacement ∆/R. If a power law hardening 
material is assumed, then the flow stress σf is related to the tensile strain e by σf /σy = (e/ey)n 
and σy and ey are the initial yielding stress and strain respectively and n is the hardening 
coefficient. The tensile strain e relates to the initial particle radius and to the current radius of 
bridging cross section by e = 2ln(R/r). Kotoul and Vrbka [12] estimated the restraining stress 
σ0 using the Bridgman approximation as  
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If the numerical relation r/R-∆/R calculated from Eqs. (5) and (6) is substituted into Eq. (7) a 
desired relation of the restraining stress σ0 associated with crack opening displacement ∆/R is 
obtained, see Fig. 2. 

 
FIGURE 2.Normalised restraining stress vs normalised crack opening displacement for 

several values of the hardening coefficient n and the neck curvature κ = 20. 

Eventually, substituting (7) into Eq. (4) one can calculate the reduction in the energy 
release rate. Numerical results are presented in Fig. 3 together with values obtained by 
Tvergaard using FEM for ey = 0.005. 
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FIGURE 3: The reduction in the energy release rate vs strain hardening. Curves 
correspond to rigid-plastic models. The curve for no debonding is based on []. 

Apparently, a significantly higher increase of the fracture toughness is predicted by the 
more accurate numerical computations than by the rigid-plastic models. It is important to note 
that the additional fracture toughness due to ductile particle bridging increases with the 
particle size R as well as the yield stress σy and the volume fraction f of the ductile particles. 
When ductile rupture involves hole nucleation and growth, the form of the 
stress/displacement law is basically unchanged, but R then becomes the half-spacing between 
voids. The void spacing is thus the scale parameter that dictates the toughening.  

The interfacial failure may occur either by cracking in the brittle matrix near the interface 
or by separation of the ductile particle from the hard ceramic matrix. The latter mechanism 
can be controlled by plastic strain which is represented approximately by gradually reducing 
the maximum interface stress σmax when the effective plastic strain at the interface exceeds a 
critical value. Actually, Tvergaard [9] used such a model. He found that for constant interface 
strength no partial debonding is predicted. More specifically, for σmax = 5σy a very small 
debonding was observed starting from the intersection with the brittle matrix crack. On the 
other side, for σmax = 3σy debonding starts at the pole of the spherical particle, leading to 
complete interfacial separation of the particle. However, when the plastic strain controls a 
failure mechanism, partial debonding is predicted and the found debonding lengths fall within 
the range of values observed experimentally. 

Kotoul and Vrbka [12] used an approach based on the energy considerations to estimate 
the length h of debonded interface of a particle in the vicinity of crack tip under assumption 
that h<< R i. e. for a relatively strong interface. Due to mechanical constraint a nonzero axial 
plastic strain increment is then observed only in a thin layer of thickness ≈2h as it can also be 
documented by FEM simulation of the deformation of the particle constrained by elastic 
matrix. The aim is to calculate the potential energy loss -δΠ associated with the growth of 
thickness of the debonded layer δh. The energy supply is partly dissipated by plastic work in 
the debonded layer δWp and partly is absorbed in the mechanism of particle/matrix interface 
debonding. The energy release rate relation  
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provides the condition governing the debonding length h. To display results obtained from 
Eq. (8) in a dimensionless form it is expedient to introduce a dimensionless composite 
parameter k = KIC/(2σy√(2R)) which combines the fracture toughness of the matrix KIC with 
the yield strength σy and the radius R of particles. Refer to Fig. 4, which displays a relation 
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between the ratio h/R versus the ratio of debonding to fracture matrix toughness Gd/GIC. Note 
that h/R is not a single-valued function of Gd/GIC. The upper part of each curve represents 
stable debonded lengths, but for debonding to occur at all an energy barrier associated with 
the region between the horizontal axis and each lower branch must be overcome. The results 
in Fig. 4 indicate that there exist threshold values (Gd/GIC)* such that for Gd/GIC >(Gd/GIC)* 
debonding can not occur. The threshold value (Gd/GIC)* depends on the composite parameter 
k and on the particle volume fraction f. Fig. 5 summarizes threshold values (Gd/GIC)* as a 
function of the composite parameter k for several values of f that would prevent debonding. 
Note that for a constant value of the matrix fracture toughness the composite parameter k 
increases with decreasing particle yield stress and/or particle size. As a consequence, 
threshold (Gd/GIC)* increases with a decrease of the particle yield stress and/or particle size. 
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FIGURE 4: a) Debond length vs debonding-toughness/matrix-toughness ratio for several 
values of the composite parameter k and the particle volume fraction f=0.15. b) Debond 

length vs debonding-toughness/matrix-toughness for several values of the particle volume 
fraction f and the composite parameter k=2. 
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FIGURE 5. Threshold value (Gd/GIC)* as function of k for several values of f. 

 
Comparison between theory and experiment 
Dlouhy et al. [14] observed that experimental values of the fracture toughness of borosilicate 
glass reinforced by vanadium or molybdenum particles, their shape can roughly be treated as 
spherical one, have fallen far behind to the theoretical expectations of the enhancement of 
fracture toughness according to the crack bridging view. The physical properties and further 
relevant information on the borosilicate glass/vanadium particle composite are given in Table 
1. Specifically, the experimentally found toughening ratio IC

eff
IC KK  (composite 

toughness/matrix toughness) was 1.4 for the volume fraction f=0.1 of vanadium particles 
while the theoretical prediction based on the crack bridging model according to Eq. (4) is 
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more than one order higher. When the observed particle cleavage in about 85 vol % of the 
metal inclusions was taken into account, the theoretical prediction of the toughening ratio 
somewhat decreases but still amounts about 5 times higher value. This estimate is further 
reduced to the value about of 2 if the existence of impurities in the particles with 2R > 10 µm 
is taken into account. It was found that the mean half-spacing between these impurities is 
about of 2.2 µm. The impurities can act as void nucleating features and, as it was already 
pointed out, void spacing becomes the scale parameter that dictates the toughening. This is in 
agreement with finding that extensive stretching was not detected and the large scale bridging 
was observed to occur only to a small extent. It is then, however, rather dubious to idealise 
bridging particles as a distribution of pressure σ0(∆) acting on the crack faces. It should be 
noted that the observed particle cleavage, see Fig. 6, indicates a decrease in particle plasticity 
induced due to two causes: (i) constraints imposed by the rigid matrix and (ii) embrittlement 
due to the high-temperature fabrication process. Observe in Fig. 2 that the peak stress in 
particles can reach a value about of 4 times higher then the yield stress. Apparently, as the 
yield stress increases the peak average stress can attain a critical value for the onset of 
cleavage.  

TABLE 1. Selected material properties of constituents 

 Borosilicate glass DURAN Mo- particles Borosilicate glassVG98 V - particles

Average particle size [µm] 8 < 3 5.5 12 

Thermal expansion coeff. α [K-1] 3.3 5.1 10.6 9.7 

Young’s modulus E [GPa] 63 336 74.8 124 

Poisson ratio ν 0.22 0.31 0.23 0.36 

Fracture strength [MPa] 56 466 48 540 

Yield strength [MPa]  437   

KIC [MPa√m] 0.6 31 0.7  

 

a) b) 

FIGURE 6: a) Details of V-particle as observed on fracture surface. b) Cross section of 
crack in V-particle and partial debonding. Crack propagates from left to the right. 

So far no contribution from crack trapping was included. Let us first discuss the model of 
crack that is trapped by tough, perfectly bonded particles described in Eq. (1). This model 
predicts the toughening ratio 7.2=IC

trap
IC KK for f = 0.1. It is seen that this value is far above 

the experimental value. Apparently, the model has to be rejected. Consider now the crack 
trapping model for the case when particles debond from the matrix. The improvement in 
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toughness is then approximated by Eq. (3). The critical issue in Eq. (3) is the estimate of the 
ratio ICd GG . The relation (3) requires that for the experimental value of toughening 

4.1=IC
eff
IC KK  and the volume fraction f = 0.1 the ratio ICd GG  should be less then 0.6. This 

value is in accordance with the threshold values (Gd/GIC)* predicted in [12], see Fig. 4. Note 
that the work of separation per unit interface area according to the debonding model used by 
Tvergaard [9] is 9σmaxδn/16, where δn stands for final separation. The effect of plastic strain 
controlled failure of the interface is represented by gradually reducing interface stress σmax. If 
the average value of σmax is estimated as 2.5σy, GIC ≈ 2γm, where γm =3.1 J/m2 is the surface 
energy of the borosilicate glass VG98, the final separation should comply with the inequality 
δn ≤ 2.65/σy. For σy = 450 MPa very small values result, i.e. δn ≤ 5.9 nm. Let us now 
substitute the threshold values (Gd/GIC)* into Eq. (3). Because (Gd/GIC)* depends on f, the 
improvement in toughness IC

trap
IC KK can be plotted against f for various values of the 

composite parameter k, see Fig. 7. Apparently, this trapping model provides best agreement 
with experimental data. Note that Xu et al. [8] stated that the model is likely to underestimate 
the true effective toughness by about 10%. Also note that bridging particles remaining in the 
wake are likely in the regime of “unstable bridging”, i.e. they fracture before the crack front 
reaches the second row of obstacles. 

 
FIGURE 7: The improvement in toughness IC

trap
IC KK vs f for various values k. 
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