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Abstract 
Thermal fatigue cracking may be observed in some components of nuclear power plants. The 
evaluation of mesocrack nucleation in the components subjected to thermomechanical 
loadings is very important to determine investigation periods and maintenance programmes. 
On the idea that damage is localized at the microscopic scale, a scale smaller than the 
mesoscopic scale of the Representative Volume Element (RVE), a three-dimensional model 
is proposed. It consists in a two scale analysis with quasi-brittle fatigue damage behaviour 
modelled by plasticity coupled with damage constitutive equations (with thermal stresses) at 
the microscale. Microscopic failure is assumed to coincide with the RVE failure when the 
damage at microscale reaches the critical value Dc. 

In order to compute the strains, the stresses and the damage history at the microscale a micro-
mechanics based model of a weak micro-inclusion subjected to plasticity and damage 
embedded in an elastic meso-RVE is considered. A localization law, in the sense of the 
homogenization theories, is developed to link the two scales and a numerical scheme is 
proposed to integrate the constitutive equations. 

Introduction 
Various components in nuclear power plants are subjected to thermomechanical loading 
during their service.  Thermal fatigue cracking is observed in the mixing zones of the cooling 
system of nuclear power plants. The evaluation of crack nucleation and their subsequent 
propagation in a pipe subjected to thermomechanical loading is very important to determine 
investigation periods and maintenance programmes. 

The inception of thermal cracking is due to a biaxial stress state: namely, one-dimensional 
cyclic thermal stresses and tensile axial or hoop mean stresses.  These striping networks are 
observed in some areas of the residual heat removal system (RHR) of nuclear power plants. 
Edge cracks located on the internal surface of the pipe are observed (Fig. 1).  

High cycle fatigue (HCF) damages are always very localized at a scale much smaller than 
the plastic strain [1; 5; 7; 4; 8]. Often, the crack initiates on a micro-defect on the surface or 
in the body of material. The mechanisms of plasticity and damage in a scale smaller than the 
RVE scale are dominating in HCF. This is the reason to consider a two-scale model in which 
the damage occurs in a weak micro-inclusion embedded in a meso-RVE, which is elastic 
(eventually elasto-plastic)  
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FIGURE 1. Striping network on the internal surface of RHR system. 

 

and free of damage. This hypothesis allows us to obtain the mesostresses and strains by a 
classical structure calculation performed in elasticity (or elasto-plasticity) with no damage at 
mesoscale and then to solve the constitutive equations of elasto-plasticity coupled with 
damage as a post-processor at microscale.  

The mechanical behaviour of the material is modelled in two different manners related to 
the two different scales. 

o At the mesoscale the material is considered elastic because brittle or HCF failures 
occur at states of stresses below or close to the yield stress. 

o At the microscale the behaviour is modelled by elastoplasticity coupled with 
damage. For the considered problem, the maximum imposed temperature is less 
than ¼ of the melting temperature of the material and thus there is no viscosity 
effect. The weakness of the inclusion is related to its yield stress taken equal to the 
true fatigue limit σf of the material, below which we consider that no damage 
occurs. The elastoplastic properties at the microscale are those of the material at 
mesoscale.  

By using a damage model, we can calculate the value of damage variable D for any kind 
of loading: 1D – 3D, cyclic loading, multiaxial fatigue loading or random fatigue. When D 
reaches a critical value Dc, a mesocrack initiate and the corresponding time or number of 
cycles is equal to the time or the number of cycles of crack initiation. 

1. An anisothermal localization law 
The use of a two scale model requires a localization law (in the sense of homogenization) to 
obtain the mechanical parameters at the microscale from the results of a reference calculation 
at the mesoscale. This scale bridging is performed by using an Eshelby-Kröner localization 
law. For an isothermal case without any damage, this relationship reads 

)( ppb εεεε µµ −+=  (1) 
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where ε  denotes the strain tensor, the exponents µ and p correspond to “micro” and “plastic” 
strains respectively. The Eshelby coefficient for a spherical inclusion is: 
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Equation (1) can be extended to take into account the damage coupled to elastoplasticity in 
the microscale [2; 6] 
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In the case of thermo-mechanical fatigue, the localisation law of equation (3) must be 
extended to take into account the temperature variation effects. Thermal dilatation in “meso” 
and “micro” scales must be considered as a part of stress free strain for each level. The strain 
tensors in “micro” and “meso” scales reads 

At microscale: *1 : LE µµµ εσε += −  (4) 

At mesoscale: LE εσε += − :1  (5) 

where Lε , *Lµε  denote the stress free strain tensor at mesoscale and microscale respectively 
and E  rigidity tensor. Stress tensor at microscale reads 

 )(:)(: * LLISE εεσσ µ −−+=  (6) 

where S  is the Eshelby tensor. By considering equations (4), (5) and (6), deviatoric parts of 
the strain and the stress at microscale can be obtained as: 
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where G is the shear modulus. Ldµε and Ldε are the deviatoric parts of the stress free strain 
tensor at “micro” and “meso” scale respectively. They correspond to plastic strain at “micro” 
and “meso” level ( pLd µµ εε = and pLd εε = ). 

In the same manner, the hydrostatic parts of the stress and strain tensors can be obtained 
as: 

T
aD

DaK
aD
D

HH ∆
−

−−
−

−
−

= µµ ασσ
1

)1)(1(3
1
1  (9) 

( )TDa
aD HH ∆−−−

−
= ))1((

1
1 µµ ααεε  (10) 

where K is the bulk modulus, αµ and α thermal expansion coefficient at “micro” and “meso” 
scale, ∆T temperature variation and H subscripts correspond to hydrostatic values. The 
localization law can be calculated explicitly in strain form as the sum of equations (8) and 
(10), 
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When there is no damage and when the “micro” expansion is equal to the “meso” one, 
there is no temperature effect on the localization law. But in presence of damage, the 
localization law (11) shows an effect (to be quantified) of temperature on the strains in the 
micro-inclusion, even when αµ = α. 

2. Effect of temperature variation on the “micro” values 
In order to investigate the effect of temperature variation on the ”micro” values, a set of 
parametric calculations is performed. The general case of onedimensional tension is 
considered. The elastic properties of material are: E = 210000 MPa, υ = 0.3. The variation of 
stresses and strains at microscale and of the triaxiality rate are studied as a function of 
temperature variation for different temperature variations and damage levels. 

Hydrostatic strain 
Figure 2-a presents the variation of the normalized hydrostatic strain (recording to hydrostatic 
strain at mesoscale) as a function of the difference between thermal bulk expansions at 
“micro” and “meso” scale. In this step, no damage is considered (D = 0). The difference 
between “micro” and “meso” expansions are modelled by considering different values of 
z=αµ/α. This figure shows that αµ > α decreases the value of  for a given εµε H H and αµ < α 
increases it.  

In practice, it is difficult to measure a different thermal expansion coefficient at 
microscale. The effect of damage on the hydrostatic strain as function of temperature 
variation is shown in Fig. 2-b with αµ = α. An increase of the damage, increases  
regarding to ε

µε H

H.   

 

              
(a)    (b) 

FIGURE 2. Change of normalized hydrostatic strain versus difference between normalized 
thermal expansions. 
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Hydrostatic stress 
The sensitivity of hydrostatic stress and triaxiality rate to damage variation and the ratio of 
“micro” and “meso” expansion coefficients are studied in this paragraph. Figure 3-a shows 
the change of normalized hydrostatic stress versus temperature variation. This figure exhibits 
that the hydrostatic stress at microscale is independent from the temperature variation when 
“micro” and “meso” thermal expansion are equivalent. Furthermore, an increase of the 
damage decreases the hydrostatic stress value at microscale. 

Figure 3-b presents the change of  with respect to the damage for different ratios αµσ H
µ/α 

and for ∆T = 100°C. At microscale, the von Mises equivalent stress do not change notably 
and it is almost equal to the fatigue limit of material [2]. Figure 3-c shows the change of the 
stress triaxiality rate with respect to the temperature variation. The stress triaxiality is 
independent of the temperature when αµ = α. 

 

               

 
(a)     (b) 
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(c) 

FIGURE 3. Change of normalized hydrostatic stress versus  and of the stress 

triaxiality  for a mesoscopic tensile stress σ. 

σσ µ /H
µµ σσ eqH /

3. Anisothermal constitutive equations at microscale 
To build athermomechanical fatigue model, the effect of the temperature variation on the 
material behaviour must be taken into account. Temperature variation can influence the 
behaviour of the structure in two manners. First, thermal expansion must be considered in the 
elasticity law. Second, the possible dependence of material properties with respect to the 
temperature imposes us to consider this effect in the time discretization of the equations.  

Let us consider equation (11) as the localization law that binds the “micro” values to the 
“meso” ones under thermomechanical loading. If we neglect the temporal derivatives of the 
material parameters, the incremental form of the constitutive equations reads: 
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where fµ is the yield criterion at microscale, Lemaitre damage evolution law 
for damage governed by the micro-plastic accumulated strain p

µµ pSYD s && )/(=
µ and: 
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with Xµ the kinematics hardening and Cy the plastic modulus of the material. The strain 
energy release rate Yµ, taking into account the different damage behaviours in tension and 
compression, is defined as [3] 
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4. Numerical scheme for post-processing a refrence structure calculation 
The damage can be determined by post-processing a reference structure calculation, 
performed in elasticity for quasi-brittle and high cycle fatigue applications and in elasto-
plasticity for more ductile conditions. The reference calculation gives the stresses, strains and 
the plastic strains history with no damage at the mesolevel of classical continuum machanics. 
Considered altogether with the localization law (11) and isotropic elasticity, they are the 
inputs for the time integration of elasto-plasticity fully coupled with damage constitutive 
equations at the microscale. By integration of the equation set (12), we can obtain the number 
cycles corresponding to initiation of a mesocrack (D = Dc). The integration method used is 
governed by strains: for each time increment tn and for an incremental value of the strains at 
the mesolevel nn εεε −=∆ +1 , the post-processor evaluates the stresses and the state variables 
at the microlevel at time tn+1. The different steps of the numerical scheme are as follows: 

Elastic predictor 
A local elastic prediction, which assumes an elastic behaviour with constant plastic strain 

p
n

p
n

µµ εε =+1 , constant kinematic hardening µµ
nn XX =+1  and constant damage D = Dn, gives a 

first estimation of the strains, elastic strains and effective stresses at microscale at time tn+1: 
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Local plastic correction 

A local plastic correction of the state and internal variables gives us their corresponding 
values at time step tn+1. To detail this step, consider that the elastic predictor has given µσ 1

~
+n , 

µε 1+n  et e
n
µε 1+  as initial estimates of the stresses, strains and plastic strains. If the yield 

condition is satisfied, then the calculation for this step is finished. If not, Newton 
iterative process starts. For simplicity, the damage is assumed to remain constant over a time 
increment.  

01 ≤+
µ
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The nonlinear equations to be solved in a coupled manner are: 
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They may straightforwardly be solved by use of Newton iterative scheme but it is 
advantageous here to write them in terms of the plastic strain pµ and of the variable 

µµ σ Xs −= ~  as a set of two equations: 
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where Rs, Rp and their derivates are taken at time tn+1 and at the iteration q. The procedure is 
then an implicit scheme with the advantages of explicit one as to finish any system of 
equations has to be solved: the unknowns are updated explicitly by use of the closed-form 
solutions of Cp and Cs. 

5. Computation of the damage 
The damage is then calculated as Dn+1 = Dn + ∆D 
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Y being given by Eq. (14) in which D = Dn and 1
~~

+= nσσ is set. 

6. Conclusion 
A two-scale damage model for thermomechanical fatigue is proposed. An anisothermal 
localisation law is developed to link up the micro values to the “meso” ones obtained by a 
reference structure calculation. An implicit numerical scheme with closed-form solutions for 
local plastic corrections, is developed for integration of constitutive equations in microlevel. 
The model is programmed as a post-processor of a reference structure calculation to 
determine the number cycles corresponding to mesocrack initiation in the studied RVE. 
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