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Abstract 
The problem of a cylinder moving on a semi-plane, carrying an oblique edge crack is studied 
by the Weight Function (WF) method. A general formulation of the WF is proposed, from 
which the Green’s Function (GF) giving the crack opening displacement (COD), is deduced. 
An iterative procedure is adopted for studying the conditions of partial crack closure. The 
method is applied to evaluate the influence exerted on the crack loading by the non uniform 
contact compliance when the cylinder crosses the crack mouth. In particular, the error 
induced by assuming the theoretical Hertzian nominal stress distribution is discussed by 
comparison with correct WF solutions and with accurate Finite Element analyses. A 
parametric study accounting for different friction conditions between the crack surfaces and 
different contact conditions between the moving cylinder and the cracked semi-plane is 
performed and typical KI  and KII histories produced by the cylinder movement are evaluated. 

 
Introduction  
Many mechanical components (e.g. gears, bearings, rail wheels,…) suffer surface damage 
due to contact fatigue. In many cases, the contact between the moving bodies produces 
globally elastic strain that locally varies as a consequence of the relative movement of the 
bodies in contact. The corresponding loading cycle can promote initiation and growth of 
oblique edge cracks, initially loaded in mixed fracture mode (I+II) [1-3]. 

The lack of symmetry of the fracture problem makes the analysis of the fatigue crack 
growth not so simple, as many evaluations of fracture parameters (KI and KII) have to be 
performed for complex stress distributions. Indeed, the local high stress gradients are 
produced not only by the travelling contact but also by possible surface treatments, that 
usually induce compressive residual stresses near the surface[4]. Moreover, the possibility for 
the lubricant to be entrapped or pumped into the crack increases the complexity of the 
problem [5,6]. 

During a loading cycle, conditions of partial closure are usually experienced by the crack. 
In this case, the problem is no more linear [6,7] and the mutual forces between the crack 
faces strongly influence the crack configuration and the Stress Intensity Factor (SIF) values.  

The Weight Function (WF) method was verified to be a very useful tool for solving this 
kind of problem [8-10]. The authors have recently proposed a general matrix formulation of 
the WF for an inclined edge crack in a semi-infinite body [10]. On this basis, an analytical 
formulation of the Green Function (GF) has been obtained [11], thus allowing the COD 
components to be determined by direct integration under a completely general loading 
condition. Based on the WF and GF, an iterative procedure was developed to obtain the 
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conditions of partial crack closure generated during the loading cycle [8,12]. Starting from a 
first attempt of the crack configuration, this procedure modifies location and extension of the 
closed regions step-by-step, until compatibility and equilibrium conditions are fulfilled on the 
entire crack within a fixed tolerance. It is worth noting that, when WF and GF are known, the 
problem can be completely solved on the basis of the nominal stress distributions (normal and 
shear components). In the WF approach, the nominal stress is considered the stress acting 
along the crack line in an equivalent uncracked body. In many cases the nominal stress can be 
easily determined, as it is not influenced by the presence of the crack. This is the case of a 
point-like force moving on the semiplane. The nominal stress produced by the point like 
loading can be obtained analytically by assuming the Bousinnesque solution [13]. 

In the present paper, the WF approach is applied for studying the problem of a cylinder 
rolling on the surface of a semi-plane carrying an oblique edge crack. This is a more complex 
problem because the presence of the crack influences the distribution of pressure on the 
surface, and consequently the nominal stress distribution. Indeed, the crack produces a not 
negligible effect on the local compliance of the semiplane. When the cylinder is in contact 
nearby the crack mouth, the distribution of the contact pressure is no more equal to that 
predicted by the Hertz theory. However, an accurate estimate of the effective pressure 
distribution can be obtained by a Finite Element analysis in which the crack is modelled 
along with possible contact between the crack faces. When the correct pressure distribution is 
evaluated, the correct nominal stress can be obtained by superposing Boussinesque solutions 
in the uncracked semiplane. Eventually, FM parameters can be efficiently calculated by the 
usual methods based on the WF and GF. It is worth noting that the FM analysis based on the 
WF is theoretically correct if conducted in this way.  

This correct WF approach is more efficient from a computational viewpoint as compared 
to the complete FE analysis including the FM parameters evaluation. Indeed, the evaluation 
of the effective pressure distribution does not require very refined FE models, which, on the 
contrary, are necessary for accurate evaluations of FM parameters (particularly in the 
presence of crack closure). However, if the preliminary FE analysis could be avoided, the 
efficiency of the calculus should be greatly increased. For this reason, an approximate 
approach is also considered by assuming for the loading Hertzian pressure distribution (not 
modified by the presence of the crack). In this case, the WF solution is approximate even 
though the WF is exact as the nominal stress distribution is approximate. However, it is 
shown that for some FM parameters, crack lengths and loading conditions the approximate 
solution can be used in practice as the errors are not very large. 

A parametric analysis was performed by considering several ratios between contact 
extension and crack length, and two friction conditions between crack edges. For these cases 
the complete FE solutions are compared to the correct and approximate solutions based on 
the WF. 

 
Problem definition 

 
A scheme of the problem is reported in fig.1: a semi-infinite body carrying an oblique edge 
crack having length a inclined by an angle θ with respect to the normal at the surface. A 
cylinder of radius R is moving on the surface and the quantity L indicates the position of the 
cylinder axis with reference to the origin located on the crack mouth. W indicates the contact 
force per unit width applied in the normal direction. The Hertzian pressure distribution (fig. 
1a) is characterised by the maximum pmax, and the contact half-width b, quantities related to 
the load W, the cylinder radius R and the elastic constants. The quantities pmax, and b, 
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completely defining the contact when the cylinder is far from the crack mouth, were used as 
scaling factors by which stresses and lengths were normalised respectively. When the 
cylinder approaches the crack mouth, the pressure distribution is modified as schematically 
represented in fig. 1b. This distribution depends on the presence of the crack and on the 
contact between the crack surfaces and it cannot be evaluated by simple analytical methods.  
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FIGURE  1.  Scheme of the problem  

 
Analysis of the crack under the effective contact conditions  

 
A FE analysis was carried out, by using the Ansys 5.7® code, to evaluate the effective contact 
pressure distributions for different positions of the cylinder. A two dimensional model was 
built up using about 2·105 four-nodes quadrilateral solid elements (stiff42). The contact 
between the cylinder and the semi-plane and between the crack faces was modeled by point 
to surface gap elements (contact48). The mesh was refined particularly at the crack mouth, in 
order to obtain an accurate reproduction of the local contact pressure distribution. A global 
picture of the model and a detail at the crack mouth is shown in fig. 2.  

 
FIGURE 2.  FE model built up for the analysis 
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The analysis was performed for a crack inclined by an angle θ= + 60°, and several a/b ratios 
were considered. Since the friction forces between the crack faces counteract the sliding, a 
friction coefficients equal to zero produces the maximum effect on the contact pressure 
distortion. For this reason the frictionless condition between the crack faces was adopted for 
the analysis. The results showed that when the distance L of the cylinder from the crack 
mouth is greater than 2b, the pressure distribution between cylinder and semi-plane is not 
influenced by the presence of the crack and the Hertzian solution holds. The model was used 
also for a complete FM solution including the evaluation of COD components, of forces 
arising between crack faces in the closed regions and of the SIFs. These values were used for 
comparison.In fig. 3, pressure distributions evaluated for a/b =12 are shown for several 
cylinder positions. It can be observed that, for L =2b, the pressure distribution is already 
regular symmetric and nearly equal to the Hertzian solution. In fact, the perturbation of the 
pressure distribution is significant when the contact spreads across the crack mouth. In this 
case, the stiffer region (X<0 in the examined case) tends to transfer a higher fraction of the 
load W and a pressure peak arises in this more stiff side of the crack mouth. 
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FIGURE 3.  Contact pressure distribution originated by different cylinder position with 

respect to the crack mouth  

 
WF analyses  
 
Approximate solution with the Hertzian contact pressure distribution  

By neglecting the effect of the crack on the contact pressure, the Hertzian distribution (fig. 
1a) with half-width b and maximum pmax was assumed in the approximate evaluation for any 
position L of the cylinder. The nominal stress distribution in the uncracked body was 
calculated by the analytical solution of Boussinesque [12] for a point like force. To this 
purpose, the pressure distribution was reduced to an equivalent system of 100 point like 
forces in bell-like distribution over the interval [ ]bLbL +− , . A parametric study was carried 
out to evaluate the influence produced by the parameters on the crack behaviour. In 
particular, the following parameters were considered: crack inclination (θ), ratio between 
crack length and contact half width (a/b), position of the cylinder (L/a), friction between 
crack faces (µ) and friction coefficient in the contact between the cylinder and semi-plane (φ). 
An extensive discussion can be found in [13,14], in the following, some results are reported 
for comparison. In fig. 4, the SIF components KI and KII are plotted versus the position of the 
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cylinder L/a, for θ=40°, µ=0.1, φ=0 and different values of the a/b ratios. Dimensionless SIFs 

values are normalized by the factor: 
a

WKo
π

⋅= . 

In this example can be verified that, as in any other similar conditions, the crack 
experiences mixed mode loading only when the cylinder is near the crack mouth (0<L/a<0.4). 
When the cylinder is external to that interval, the crack is subjected to pure mode II. 
Moreover, mode II seems to quantitatively prevail in the whole L/a domain. 

By increasing the friction coefficient between the crack faces, lower SIF values were 
predicted. However, the most important consequence of increasing µ, is that different SIFs 
histories are produced for opposite versus of the relative movement. This effect can be 
observed in fig. 5, where KI vs. KII loci, due to rightward (+) and leftward (-) cylinder 
movement are reported. In general, a crack with positive θ, as in fig. 1, experiences more 
intense SIF cycles when the cylinder moves rightward. This behaviour was observed for 
every crack inclination (θ≠0°), and the difference between rightward and leftward K-cycles 
increases when either the crack inclination θ  or the friction coefficient are increased.  
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FIGURE 4. KI  and KII vs. L/a for different a/b ratios 
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FIGURE 5.  KII vs. KI loci for opposite versus of the cylinder movement: rightward (+) 

leftward (-). (a) moderate friction µ=0.1, (b) high friction µ=0.5. 

As a crack inclined by an angle +θ  with the cylinder moving leftward is completely 
equivalent to a crack inclined by an angle –θ  with the cylinder moving rightward, the 
previous results can be used to study the effect of positive and negative crack inclination with 
respect to the cylinder movement direction. The dependence of the ranges ∆KI and ∆KII on 
the inclination angle, are reported in fig. 6 for rightward movement over the whole interval    
-∞<L/a<+∞. Figure 6 demonstrates that the most critical conditions are experienced by the 
cracks with positive inclination (fig. 1). 
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FIGURE 6. ∆KI and ∆KII vs. θ  for µ=0.5 

  
WF solution with the correct pressure distribution and comparison 
The WF was used to determine the SIFs and the COD values considering the effective (FE 
evaluated) pressure distributions. The nominal stress within the uncracked body was 
determined with proper discretization of the FE pressure distribution using 100 point-forces , 
the Boussinesque solution and the superposition principle.  As the partial crack closure and 
the corresponding pressure distribution and COD components along the crack faces were 
evaluated also by the FE, a comparison with the correct WF results was carried out.  

In figs. 7 and 8, contact pressure and COD (normalised by the factors: 
a
Wp

π
2

0 = ,   
E
pav 0

0
⋅

=  

respectively) are compared. A quite good agreement between the results obtained by the two 
methods can be verified. This was considered a further confirmation of the validity of the WF 
and of the iterative algorithm proposed in [8] for determining the conditions of partial crack 
closure. 
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FIGURE 7.  Comparison between pressure distributions (a) and COD components (b) 

obtained by the FEM and the correct WF methods 

The analysis was then addressed to compare the SIFs values, obtained by means of the two 
WF based approaches. An example of the comparison is reported in fig. 8. As expected, the 
differences between the two solutions are significant, particularly for KI , only within a 
limited interval of cylinder positions near the crack mouth. The approximate solution based 
on the Hertzian pressure distribution tends to overestimate both KI and KII. This result is 
consistent with the observation that the stiffer side of the plane body tends to withstand a 
portion of the load W larger than that predicted by the Hertzian solution. Indeed, the solution 
of a point-like load travelling on the surface [14], demonstrated that when the force is in the 
stiffer portion lower SIFs values are produced. As a consequence, the pressure peak located 
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in the stiffer portion is less effective on producing the SIF values and, consequently, the 
approximate approach is conservative. Figure 8 refers to a specific value of the a/b ratio, 
however similar trends were obtained for any other analysed a/b ratio. 
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FIGURE 8.  KI (correct) and KI (approx) (a),  KII (correct) and KII (approx)  (b) as a function of the 

cylinder distance from the crack mouth  

The relative errors introduced by the Hertzian approximation in the SIF amplitudes (∆KI e 
∆KII ) for a complete loading cycle -∞<L<+∞, are shown in figure 9. The errors reach their 
maximum values when the dimension of the contact area is comparable with the crack length, 
whereas they become negligible for either very small cracks or concentrated loads. Indeed, 
when a/b>50 the solution is nearly equal to that produced by the point-like force, i.e. not 
influenced by the compliance difference. On the other hand, the errors for very short cracks 
are small because the pressure distribution spreads over a large portion of the surface as 
compared to a. 
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FIGURE 9.  Relative errors in the ∆KI and ∆KII evaluation as a function of a/b ratio 

An estimate of the effective SIF history at the crack tip can be obtained by defining an 
equivalent SIF, and evaluating the corresponding range ∆Keq = Kmax – Kmin. It is worth noting 
that both KI and KII are positive in the region of mixed mode of fracture, therefore 

22max IIImax KKK += , whereas Kmin=KIImin as the minimum (negative) value is obtained 
under pure mode II. In fig. 10 the ∆Keq values are plotted vs. the a/b ratio for the two pressure 
distributions. It is interesting to observe that considering the range of equivalent SIF, the error 
introduced by the Hertzian approximation is quite small and on the conservative side.  

Several analyses carried out to study the effect of the friction between the crack faces 
confirmed that the difference between the two solution become smaller when the friction is 
increased.  
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FIGURE 10. ∆Keq vs. a/b ratio obtained by considering the two WF approaches  

 
Conclusions 
The WF method was applied to analyse the problem of a cylinder travelling on the surface of 
a semi-plane carrying an inclined crack. The influence of the non-symmetric compliance of 
the cracked body was studied. The effective contact between cylinder and semi plane was 
evaluated by FEM and this distribution was employed as the input for a correct FM 
evaluation based on the WF. An approximate and very computationally efficient approximate 
approach was also applied by assuming for the contact pressure the Hertz solution. 

The correct WF solution was compared with the result of an accurate FE model and a very 
good agreement was found in SIFs, COD and contact pressure between the crack faces. By 
the comparison between the correct and approximate WF approaches it was shown that the 
simple method produced a reasonable overestimate of the crack tip stress cycles. This allows 
the analyser to apply the approximate approach in the analyses involving several parameters 
or when the prediction of fatigue crack growth requires a lot of SIF evaluations. 
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