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ABSTRACT: Some numerical studies of crack propagation are based on using constitutive
models that account for damage evolution in the material. When a critical damage value has
been reached in a material point, it is natural to assume that this point has no more carrying
capacity, as is done numerically in the element vanish technique. In the present review this pro-
cedure is illustrated for micromechanically based material models, such as a ductile failure
model that accounts for the nucleation and growth of voids to coalescence, and a model for in-
tergranular creep failure with diffusive growth of grain boundary cavities leading to micro–
crack formation. The procedure is also illustrated for low cycle fatigue, based on continuum
damage mechanics. In addition, the possibility of crack growth predictions for elastic–plastic
solids using cohesive zone models to represent the fracture process is discussed.

INTRODUCTION

Many procedures for the analysis of crack propagation are based on using criti-
cal values of parameters characterising the crack–tip stress and strain fields,
such as the stress intensity factor, the J–integral, the crack–tip opening dis-
placement, or the crack–tip opening angle. Alternatively, the prediction of
crack growth may be directly based on the fracture mechanism operating on
the microscale, either by incorporating the failure mechanism in the constitu-
tive equations for the material, or by representing the failure mechanism
through a cohesive zone model of the fracture process zone. The present paper
will give a survey of a number of investigations where the prediction of crack
growth has been based on models of the actual fracture mechanism.

One of the most well known material models that accounts for the microme-
chanics of damage is the modified Gurson model [1,2], which models the
evolution of ductile fracture by the nucleation and growth of voids to coales-
cence. Some of the analyses using this model to predict ductile crack growth
will be discussed. Also for creep failure in metals at high temperatures material
models [3] have incorporated the micromechanisms of diffusive cavity growth
in grain boundaries, leading to open micro–cracks at grain boundary facets at



a rate strongly affected by grain boundary sliding. Results on creep crack
growth based on this failure model will be mentioned. The term continuum
damage mechanics is used for constitutive relations, which are able to repre-
sent the effect of damage evolution on the macro level, by developing appropri-
ate expressions in which free material parameters can be fitted to experiments,
as in the case of low cycle fatigue [4]. As an example, predictions of micro–
crack formation in a metal matrix composite, based on this material model, will
be presented here.

Cohesive zone models have been used in recent years in a number of analy-
ses of crack growth resistance in elastic–plastic solids [5]. Some of the predic-
tions obtained in these studies will be briefly mentioned here.

MATERIAL MODELS WITH DAMAGE EVOLUTION

When the failure mechanism is incorporated in in the constitutive relations, the
crack growth follows directly from the predicted loss of stress carrying capac-
ity in one or more integration points in an element. Then it is natural to kill the
failed elements, by using the element vanish technique [6]. This procedure has
been used for the predictions of crack growth to be discussed in the following
three subsections.

Crack growth by ductile failure
Much interest has been devoted to the development of elastic–plastic or visco-
plastic constitutive equations that account for the effect of ductile damage de-
velopment. The most well known model is that suggested by Gurson [1], which
makes use of an approximate yield condition  �(�ij�,��M�,� f)� 0  for a mate-
rial containing a volume fraction  f  of voids, where  �ij  is the average macro-
scopic Cauchy stress tensor and  �M  is an equivalent tensile flow stress repre-
senting the actual microscopic stress–state in the matrix material. With some
modifications to improve predictions of plastic flow localization [7] and of fi-
nal failure by void coalescence [8] this yield condition is of the form
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2)½  is the macroscopic effective Mises stress, and

sij � �ij�Gij�kk
3  is the stress deviator. This material model accounts for
the growth of the void volume fraction  f  due to plastic flow of the material



around voids and due to the nucleation of new voids, and final failure is directly
predicted when  f  reaches the critical value, at which the yield surface has
shrunk to a point.

This material model has been applied in a number of numerical studies of
crack growth, including some studies where two populations of void nucleat-
ing particles are modelled; large weak particles that nucleate voids at relatively
small strains and small strong particles that nucleate voids at much larger
strains. For an edge cracked specimen under dynamic loading [9] results of a
plane strain analysis are shown in Fig. 1, where contours of constant void vol-
ume fraction define the predicted crack growth path in a case of a random dis-
tribution of the larger inclusions ahead of the initial crack–tip. Also a full three
dimensional analysis has been used to analyse this type of specimen [10]. Here
the computer requirements were much larger, but the advantage is that more
realistic spherical shapes of the larger inclusions can be accounted for, and that
3D modes of growth are accounted for, such as tunnelling and shear lip forma-
tion. Continuations of the 3D fracture study have been carried out recently in
analyses that do not directly focus on crack growth, e.g. the failure of a metal
matrix composite [11] or of a Charpy V–notch specimen cut through a weld
[12].

Figure 1: Crack growth indicated by contours of constant void volume frac-
tion,  f , for random distribution of larger particles. (a) t� 1.5��s ,
�a� 0.09�mm ; (b) t� 1.6��s ,  �a�  0.27�mm . (From [9]).

Some attempts to include a damage dependent material length scale in this
constitutive model have been carried out by Leblond et al. [13] and Tvergaard
and Needleman [14], using an integral condition on the rate of increase of the
void volume fraction. The expressions used in [14] are
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where  L� 0  is the material characteristic length,  z� gijy
iyj�  , and

p� 8 ,  q� 2 . The usual local formulation corresponds to the limit  L	 0 ,
and it has been shown, as for other non–local continuum models, that the mesh
dependence of numerical solutions in a softening regime are removed by taking
L� 0 . This nonlocal damage model has been applied by Needleman and
Tvergaard [15] to predict ductile crack growth in the edge cracked specimen
under dynamic loading also analysed in [9,10].

Creep crack growth
High temperature failure leading to crack growth has been modelled in terms
of continuum damage mechanics (Hayhurst et al. [16]), where damage param-
eters are fitted to material behaviour on the macro level. The micro–mecha-
nisms of creep failure in polycrystalline metals involve the nucleation and
growth of small voids to coalescence; but here diffusion plays an important
role, and the cavities occur primarily on grain boundary facets perpendicular
to the maximum principal tensile stress (e.g. Ashby and Dyson [17]), where a
creep constraint on the rate of cavitation is often a dominant mechanism. Cav-
ity coalescence on a grain boundary facet leads to a micro–crack, and final in-
tergranular failure occurs as such micro–cracks link up. Grain boundary sliding
is an important mechanism that further complicates the analysis of creep fail-
ure. A micromechanically based constitutive model for creep failure in a poly-
crystalline metal has been proposed (Tvergaard [3,18]), in which the mac-
roscopic creep strain rate is given by the expression
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Here,  n  is the creep power,  C� 0  represents substructure induced accelera-
tion of creep, and expressions for other parameters are determined by axisym-
metric cell model studies for a grain with a cavitating facet and sliding bound-



aries [3]. If there is no sliding,  f*  is unity,  	*  is the density of cavitating facets
m*

ij  is a direction tensor for cavitating facets, and  S*� �n  is the difference
between the maximum principal stress and the normal stress on a cavitating
facet. The material model has been used to predict crack growth [18], by apply-
ing the element vanish technique when cavity coalescence was predicted on a
grain boundary. For a double edge cracked panel under tension Fig. 2 shows
the predicted damage near the crack–tip at two stages of time, where the dam-
age parameter  a/b  is the cavity radius divided by the cavity half spacing on a
facet, and vanished triangular elements are painted black.

(a) (b)

Figure 2: Distributions of creep damage ahead of a crack–tip. Continuous cav-
ity nucleation, no grain boundary sliding, and  C� 40 .  (a) t
t0f � 0.064 .
(b) t
t0f � 0.686 . (From [18]).

Plane strain multi–grain cell models for a polycrystalline aggregate have
been used by van der Giessen and Tvergaard [19] to study the final creep frac-
ture process, as microcracks formed at grain boundary facets link up. Such
analyses are however limited by the unrealistic grain geometry and the reduced
constraint on sliding. But a great advantage is that large grain arrays can be ana-
lysed if a crude mesh is used within each grain, and this allows for direct model-
ling of intergranular crack growth in a plane strain multi–grain aggregate
(Onck and van der Giessen [20]).

Fatigue cracking
Among the many applications of continuum damage mechanics [4], studies of
failure by low cycle fatigue are an important example, where a material model



directly based on the micro mechanics of failure has not been developed. As
the development of fatigue fracture depends strongly on the plastic strain range
in each cycle, an accurate cyclic plasticity model is needed (e.g. Ohno and
Wang [21]), with damage mechanics incorporated. The scalar damage parame-
ter  D  is taken to be zero initially, but when the accumulated plastic strain  p
reaches a threshold value  pd , it is assumed that damage starts to develop ac-
cording to the evolution law
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Here,  S  is a material parameter describing the energy strength of damage, the
strain energy release rate is given by  Y� �2e��RV
(2E(1�D)2) , and the ex-
pression for  RV  depends on the mean stress  �kk
3 , so that fatigue develops
more rapidly under tensile stresses. When the damage parameter reaches a crit-
ical value  Dc , this is taken to represent such a high density of microcracks that
coalescence into a macrocrack occurs. In a finite element analysis this failure
event is represented in terms of the element vanish technique, such that the
model can be used to predict the growth of a macroscopic crack. This type of
numerical study has been carried out in [22] for a metal matrix composite,
where the fatigue crack growth occurs in the metal matrix around short brittle
fibres.

MODELLING BY COHESIVE ZONE

As an alternative to the continuum models discussed above, a number of crack
growth analyses describe the fracture process separately in terms of a traction
separation law for the crack surface, while the inelastic deformations around
the crack are accounted for by standard plasticity without damage. This gives
an attractive possibility for separating effects of fracture process parameters
from effects of the material parameters determining inelastic deformations,
e.g. in relation to determining crack growth resistance curves. Thus, analyses
of this type determine directly the ratio between the remote fracture toughness
and the local fracture toughness determined by the assumed cohesive model.

In [5] a rather general case of crack growth along the interface between an
elastic–plastic solid and a rigid solid was studied. Here, a cohesive zone model
was needed that accounts for both normal and tangential separation, or mix-
tures of these, not only in order to study effects of remote mixed mode loading,
but also because of the oscillating elastic singularity resulting from the elastic



Figure 3: Steady–state interface toughness as a function of the local mixity
measure  �0 , for  �Y1
E1 � 0.003  and  �Y2 �� , considering different
values of  �^
�Y1 ,  E2
E1 � 2 . (From [23]).

mismatch across the interface, which gives varying mixtures of normal stress
and shear stress along the interface. This work has been continued in a number
of different studies of interface debonding, for different types of material sys-
tems. Thus, in [23] resistance curves have been determined numerically for
crack growth along an interface joining two elastic–plastic solids, or an elastic–
plastic solid to an elastic substrate. The steady–state value  |K|ss  of the remote
fracture toughness is found when the resistance curves reach their maximum,
which depends on the local mode mixity  �0  near the crack–tip. As an example
Fig. 3 shows such steady–state values for a case with an elastic substrate, where
the elastic modulus  E2  in the substrate is twice that in the elastic–plastic solid.
The angular measure  �0  is near  0o  for mode I loading and would be near
90o  or  � 90o  for mode II loading. The steady–state toughnesses are normal-
ised by the value  K0  corresponding to a purely elastic solid, for the separation
energy assumed in the traction separation law. The different curves correspond
to different values of the peak stress  �

^  for the traction separation law, normal-
ised by the initial yield stress. The curves show two typical features of such re-
sults, that the fracture toughness level is very sensitive to small increases of the
peak stress, and that the curves have minima for near mode I conditions at the
crack–tip.
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