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ABSTRACT: In the present paper the way of determination of elastic parameters of the body
weakened by elliptical voids is presented. Starting from arbitrary placed single elliptical void in
plane sheet, decrease of Young's modulus and Poisson's ratio is obtained. After that, using
statistical distribution of voids, the decrease of overall elastic constants is found. In this
procedure there are two ways, Taylor and Self-consistent model. In the first method interaction
of defects is ignored, while in the second, so-called weak interaction is incorporated. Both
methods are applied for small concentration of defects. In the paper it is shown that cracks and
circles are special cases of the model derived in this study. Such obtained model is applied for
determination of stiffness of steel members of the truss of bridge destroyed during lust war by
shrapnel of bombshells. Such calculated stiffness is input for static and dynamic analysis of
bridges using FEM. This approach is applied for analysis of The Pivnica Bridge, across The
Ibar River, on the railway track Belgrade-Thessaloniki, destroyed during lust war. It is shown
that with increasing a damage of members of the bridge the time period of free vibrations is
increasing to, while natural frequency is decreasing.

INTRODUCTION

Damage Mechanics found its place not only in scientific papers and books in
the past, but rather in the codes for engine parts design. The best example is
aircraft industry. In recent times, the design specifications for fatigue of civil
engineering structures, such are bridges, have been introduced. For example
American Association of State Highway Officials (AASHO) proposed Fatigue



Design Curves for Fabricated Bridge Components. In the present paper a way
of Damage Mechanics application on steel bridge destroyed by projectile is
investigated.

PLANE SHEET WEAKEND BY ELIPTICAL VOID

Consider the problem of the elliptic cylinder (a3 → ∞) (see Figure 1) embedded
in the elastic isotropic material with the same elastic parameters E (Young's
modulus) and ν (Poisson's ratio). Eshelby in his 1957 [1] paper referred to
"eigenstrains" as stress-free transformation strains. He proved that the uniform
"eigenstrain" *'

ijε  within the elliptical inclusion, cause the uniform

"eigenstresses" *'
ijσ  in the same region (see also Mura, [4]):

( )
*'
11

21

2
2

21

21
2
2*'

11
22

1
ε

υ
µσ









+
+

+
+

+−
−

=
aa

a
aa

aaa

( )
.

1
2

1
      *'

33
21

1*'
22

21

2
2

21

2
2 ε

υ
µυ

ε
υ
µ

aa
a

aa
a

aa
a

+−
−













+
−

+−
+

( )
*'
22

21

1
2

21

21
2
1*'

22
22

1
ε

υ
µσ









+
+

+
+

+−
−

=
aa

a
aa

aaa
(1)

( )
.

1
2

1
      *'

33
21

2*'
11

21

1
2

21

2
1 ε

υ
µυ

ε
υ
µ

aa
a

aa
a

aa
a

+−
−













+
−

+−
+

,
1
2

1
2

1
2 *'

33
*'
22

21

2*'
11

21

1*'
33 ε

υ
µε

υ
µυε

υ
µυσ

−
−

+−
−

+−
−=

aa
a

aa
a

,
)(1

2 *'
122

21

21*'
12 ε

υ
µσ

aa
aa
+−

−=

,2 *'
23

21

2*'
23 εµσ

aa
a
+

−=

,2 *'
31

21

2*'
31 εµσ

aa
a
+

−=



Figure 1: Elliptical void in the global and local (primed) coordinate system

In the above expressions a1=a and a2=αa are half axes of the elliptical region,
while µ and ν are the shear modulus and Poison's ratio respectively. According
to equivalent inclussion method, Mura 1987 [4], the total stress within the
elliptical region under far field stresses σij

', and one that is caused by the
"eigenstrain" given by the expressions (2.1) should be zero everywhere in the
eliptical region if the region should represent the void:
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Equation (2) is written for plane stress condition. Substituting governing values
from the Eq. (1) into Eq. (2) leads to the system of equations with respect to
unknown "eigenstrains" *'

11ε , *'
22ε  and *'

12ε . The solution of the system of
equations is:
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Once the *'
ijε  are known, the increase of the strain energy of the body due to

presence of elliptical void is obtained as:
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Substituting (3) into (4) yields to:
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Differentiating expressions (5) twice with respect to stresses yields to the
compliances:
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where Voigt notation, σ'1 =σ'11, σ'2 =σ'22 and σ'6 =σ'12 is used. Also in the
expression (6) (k) refers to a single eliptical void and (*) stands for the increase
of the governing value of the compliance due to presence of the void. Once the
compliances *)(' k

ijS , in the local coordinate system are determined, using the
transformation rule, Horii and Nemat-Nasser [2] the compliances in the global
coordinate system  *)(k

ijS can be determined.

Mean field theory (uniform distribution of voids)
In the case of many voids the total compliance would be, Horii and Nemat-
Nasser [2], Sumarac and Krajcinovic [5]:
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In the above expression ( )* refers to the increase of the value due to presence
of voids, and Sij is the compliance matrix of the undamaged (virgin) material.
In the case of of Taylor model system of Eq. (2.7) leads to:
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In the case of Self-consistent model Eq. (7) are:
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Solution of them is:
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The total overall compliance for matrix in the case of Self-consistent
approximation for uniform distribution of elliptical voids is:
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DAMAGE AND REPAIR OF BRIDGE PIVNICA

In the present paper the damage of the bridge Pivnica across The Ibar River on
the railway Belgrade-Thessaloniki is presented. The bridge was destroyed
during the bombardment of our country.  Rebuilding of the bridge was
performed using one temporary support at the place of most severe damage.
The two new spans were built in factory, but other damage was repaired on site.
The static and dynamic characteristics of rebuild structure are analyzed in the
present paper according to damage mechanics and theory of structures. It is
shown that for more amount of damage structure of the bridge becomes more



compliant or in another words period of free vibration is slightly increased. In
the paper the problem of fatigue of material, especially of parts which
undergone the low cycle fatigue is shortly outlined.
Bridge Pivnica was hit during bombardment two times. First bombshell hited
the middle part of bridge, but it didn't fell down. Second projectile hit diagonal
above support, and then bridge felt into river, see Figure 2. Due to impact, the
bottom members suffered plastic deformation. Besides that there was a lot of
damages due to bomb shrapnel. Holes in the members can be approximated as
ellipses. In the first section it is explained in details how the decrease of
Young's modulus can be expressed in terms of damage, see Eq.(8) and (11).
It should be noted that for reconstruction of bridge it is spent 75t of steel. Total
weight of the bridge is 440t, see Figure 4. In Figure 3 statical scheme is shown
for finite element method.

Figure 2: Destroyed bridge Pivnica

Dynamical characteristics of reconstructed bridge

All static and dynamic characteristics are analyzed using FEM procedure. First
step was to find free vibrations for first three modes. They are: T1=0.731s,



Figure 3: Reconstructed bridge Pivnica-statical scheme

T2=0.2491s, T3=0.1212s. For the damaged bridge it is calculated ω=0.1, ω=0.2
and ω=0.3 for the two spans of bottom members and four spans of top
members. For instance in case of ω=0.3 T2(ω=30%)=0.2551. This result was
expected. If structure is more damaged, period of vibration is larger.

Figure 4: Reconstructed bridge Pivnica



Problem of Fatigue
It is well known that railway bridges are designed against high cycle fatigue.
However during the bombardment some elements are destroyed. Neighboring
parts suffered low cycle fatigue. It was impossible to change all elements. It is
important to check behavior of elements, which suffered low cycle fatigue, and
they are still in construction. Especially this is important during the winter
when temperatures are well below zero.
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