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ABSTRACT:  This paper presents validation of the treatment of secondary stresses within
Revision 4 of the R6 assessment procedure using finite element analyses of cracked
cylinders under thermal loading.  Cylinder with a fully-circumferential internal crack and a
part-circumferential external surface crack are considered as model examples.  The crack
driving force values obtained from cracked-body finite element analyses are compared to
values obtained using simplified uncracked-body routes within R6.  The secondary stress is
applied using a temperature gradient.  Various temperature loadings and crack sizes have
been examined.  Also, work performed by the  Central Research Institute of Electric Power
Industry (CRIEPI) in Japan, which has examined the same geometries, has been compared
to the present finite element results in some instances.  It is concluded that for the cylinder
with a fully-circumferential internal crack the R6 routes are conservative when the thermal
load is applied as an axially linear or radially non-linear temperature distribution.  The R6
routes are generally conservative when the thermal load is applied as a radially linear
temperature distribution, and is only very slightly unconservative in some of the cases.
Good agreement is obtained between the present work and the CRIEPI data.

INTRODUCTION

Integrity assessments of structures containing defects are routinely
performed using the R6 procedure [1].  R6 uses a failure assessment
diagram (FAD) to assess the proximity of the component to failure by fast
fracture or plastic collapse.  Two parameters, Lr and Kr, are evaluated. If the
assessment point (Lr, Kr) lies outside the failure assessment curve Kr=f(Lr)
on the FAD, then failure is conceded.  When using R6, it is necessary to
categorise the applied loading as either primary or secondary.  Pressure or
applied mechanical loads are categorised as primary because they are load-
controlled, and can therefore cause plastic collapse of the structure.
Residual and thermal stresses are normally classified as secondary because
they do not contribute to plastic collapse. This paper deals with thermal
(secondary) loading only and primary loads will not be discussed.  When



secondary stresses act alone Lr=0 and f(Lr)=1.  The parameter Kr is then
evaluated using Section II.6 of R6 and failure is conceded if Kr ≥ 1.
Specifically, for secondary stresses alone, Kr is defined by:

                                                  mat
s
J

s
rr /KKKK == (1)

where Kmat  is the material fracture toughness and s
JK  is an effective stress

intensity factor for secondary stress.  Section II.6 gives advice for
determining s

JK  based on simplified methods.
In this paper Section II.6 of R6 is validated using finite element (FE)

analyses of cylinders under thermal loading. The crack driving force values
from cracked-body FE analyses are compared to values obtained using the
simplified routes within R6 Section II.6. In addition, work performed by the
Central Research Institute of Electric Power Industry (CRIEPI) in Japan is
also presented. The crack driving forces obtained  from the CRIEPI cracked-
body analyses are compared to the present results in some cases.

THE R6 APPROACH FOR SECONDARY STRESSES

In this section, three methods for determination of s
JK  are described. The

first two are approximate methods in R6 Section II.6 which use inelastic and
elastic analysis of the uncracked-body in conjunction with weight function
solutions for K. The third is the use of cracked-body inelastic analysis which
is used to assess the accuracy of the R6 methods.

Uncracked-body R6 inelastic route
Elastic-plastic uncracked-body FE analysis is performed to obtain the
relevant stress and strain fields. A stress intensity factor, s

σK , is obtained

from the inelastic stress field. A stress intensity factor, s
εK , due to the

“pseudo-stress” yyσ~  is also derived from the inelastic mechanical strain
field:
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where E and ν are the elastic constants with the y-axis normal to the defect in
the x-z plane. Here, s

σK  and s
εK  were calculated using the analysis tool R6-

Code [2].  s
JK  is then estimated at the actual crack size a from:
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with β = 1 or 3 in plane stress, plane strain, respectively. For axisymmetric
conditions, β = 3 is used.  This value is used for the cases analysed.

Uncracked-body R6 elastic route
In the absence of an elastic-plastic analysis, an estimate of s

JK  is given in
R6 by:
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and s
IK  is the linear elastic stress intensity factor.

Cracked-body R6 inelastic route
Values of J may be obtained by performing FE analyses using cracked-body
meshes.  s

JK  is then calculated from J using the relationship:

                              1/2s/s
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E/ = E/(1-ν2) for plane strain and axisymmetry, E/ = E for plane stress.

COMPONENT GEOMETRIES

The first geometry considered is a cylinder with internal radius, Ri =
100mm, section thickness, t = 10mm and a fully-circumferential internal
crack of depth a. Figure 1 shows the ABAQUS [3] FE cracked-body mesh
for a/t = 0.25. This mesh consists of 688 ABAQUS CAX8R axisymmetric
8-noded elements and 2211 nodes. The mesh is analysed in axisymmetric



conditions.  The uncracked cylinder was modelled using this mesh but with
the crack face nodes constrained in the axial direction.

Figure 1: Axisymmetric FE mesh of cylinder with a fully-circumferential
internal crack with a/t = 0.25.  AB is the symmetry plane.

The second geometry is the same cylinder but with a part-
circumferential external semi-elliptical surface crack, with ratio of crack
depth to half length, a/c. The FE analyses for this component were
performed by CRIEPI.

TABLE I: Material properties used in ABAQUS analyses

Material Properties
Conductivity 14.12×10-3 W/mm/oC
Specific heat 492 J/kg/oC
Density 7.966×10-6 kg/mm3

Thermal Expansion 1.456×10-5 mm/mm/oC
Young’s Modulus 154000 N/mm2

Poisson’s Ratio 0.3

Table I shows the material properties used.  The limit of proportionality
was taken as 196MPa and the 0.2% proof stress, σy, was 230.22MPa. Linear
strain hardening was assumed.  The same material description was used in
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the CRIEPI analyses, the only difference being that the thermal expansion
coefficient was taken to be 2×10-5 mm/mm/°C.

FINITE ELEMENT ANALYSES

FE analyses using ABAQUS [3] were performed on both the uncracked-
body mesh, to generate the stress and strain fields required by the R6
inelastic route, and the cracked-body mesh, to determine J.

Further ABAQUS analyses were performed and these results were
compared to the cracked-body FE J values obtained from CRIEPI, which
used the MARC FE program.  For these cases a thermal expansion
coefficient of 2×10-5 mm/mm/°C was used.

Cylinder with fully-circumferential internal crack
Three crack sizes, a/t = 0.25, 0.50 and 0.75, and three loading conditions
were examined. To apply the axially linear temperature distribution, an
initial temperature of 20°C was applied to the entire cylinder. Temperature
boundary conditions were applied so that the nodes on the symmetry plane
(see Fig. 1) were set to 20°C and the nodes at the top of the cylinder were
set to 620°C. A transient analysis was then run until a steady state was
achieved and the temperature history was used as the loading in the thermal
stress analysis.  The radially linear temperature distribution was applied in
the same manner as the axially linear temperature distribution but with
different temperature boundary conditions. For the radially non-linear
temperature distribution only one thermal-structural analysis was performed
to evaluate the crack driving forces.

For the three temperature distributions the magnitude of the temperature
difference, ∆T, was varied to provide different levels of plasticity.  For the
axially linear temperature distribution, ∆T values of 600°C, 700°C and
800°C were used.  For the radially linear and non-linear temperature
distributions, ∆T values of 200°C, 300°C and 400°C were employed.

Cylinder with part-circumferential external surface crack
Only one crack size and loading condition were examined for the part-
circumferential external surface crack.  The crack size was a/t = 0.25 and a/c
= 0.50.  A temperature difference, ∆T, of 200°C was used to define the
temperature distribution.  For this case the FE analysis was performed by
CRIEPI and the data were used to perform the simplified R6 assessments



and to compare these to the cracked-body crack driving forces calculated by
CRIEPI.

RESULTS AND DISCUSSION

Fully-circumferential internal crack
Figure 2 shows the elastic-plastic uncracked-body pseudo and yy stresses
across the symmetry plane AB for the axially linear temperature
distribution.  The pseudo and yy stresses are positive up to 5mm through the
thickness from the internal surface of the cylinder and then are negative to
the outer wall.  As ∆T increases, the peak stresses and stress ranges increase.
Similar stress distributions are obtained for the radially-linear and non-linear
cases.

Figure 2: Elastic-plastic uncracked-body (a) pseudo and (b) yy stress,
across AB plane for the axially linear temperature distribution.

Table II shows the values of stress intensity factor derived from the R6
inelastic and elastic routes and from the cracked-body analysis for the fully-
circumferential internal crack for the three temperature distributions.
Results for one value of ∆T are tabulated in each case.
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TABLE II: Values of K derived from R6 elastic and inelastic routes and from cracked-
body FE analyses. Cylinder with fully-circumferential internal crack

a/t s
σK

(MPa.m1/2)

s
εK

(MPa.m1/2)

Elastic
s
JK

(MPa.m1/2)

Elastic-plastic
s
JK

(MPa.m1/2)

Cracked-body
s
JK (J)

(MPa.m1/2)
Axially linear temperature distribution with ∆T = 600°C

0.25 24.20 26.31 27.89 28.27 26.69
0.50 33.24 35.66 38.72 38.30 34.76
0.75 31.37 32.69 39.74 34.15 30.99

Radially linear temperature distribution with ∆T = 200°C
0.25 24.14 27.17 34.26 28.79 29.04
0.50 32.43 36.05 44.18 38.00 39.42
0.75 31.02 35.79 43.15 35.72 31.71

Radially non-linear temperature distribution with ∆T = 200°C
0.25 21.86 24.46 28.55 25.49 23.89
0.50 27.30 30.45 33.47 31.15 30.46
0.75 26.95 31.10 32.22 30.54 25.47

Figure 3(a) shows that, for all of the temperature differences, the R6
inelastic route of equation (3) provides a conservative estimate of crack
driving force, since the values of  K(R6)/K(FE) lie above unity, for the
axially linear temperature case. s

JK  values from the elastic R6 route using

equation (6) are compared to the FE cracked-body s
JK  values in Figure 3(b).

The elastic R6 route also provides a conservative estimate of crack driving
force.

Figure 3:  Comparison of (a) inelastic and (b) elastic uncracked-body R6 route
s
JK  solutions with elastic-plastic cracked-body FE s

JK  solutions,
for axially-linear temperature distribution.
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Figure 4(a) shows the level of conservatism of the R6 inelastic route
compared to the cracked-body results for the radially linear temperature case.
For an a/t ratio of 0.5 at ∆T of 200, 300 and 400°C, and for an a/t of 0.25  at
200°C and 300°C, the R6 route is slightly unconservative.  However, apart
from these unconservatisms, the R6 inelastic route provides a conservative
estimate for the crack driving force. s

JK  values derived from the elastic R6

route of equation (6)  are compared to the s
JK  values from the cracked-body

FE analyses in Figure 4(b). The elastic R6 route provides a consistently
conservative estimate of crack driving force. As the temperature difference
increases the conservatism of the elastic R6 route increases.

Figure 4:  Comparison of (a) inelastic and (b) elastic uncracked-body R6 route
s
JK  solutions with elastic-plastic cracked-body FE s

JK  solutions, for
 radially-linear temperature distribution.

Figure 5(a) shows the level of conservatism of the R6 inelastic route
compared to the cracked-body FE data for the radially non-linear
temperature case.  For all of the temperature differences, the inelastic R6
route is conservative.  In this case, the level of plasticity makes little
difference to the level of conservatism. s

JK  values derived from the elastic

R6 route of equation (6) are compared to the s
JK  values from the cracked-

body FE results in Figure 5(b).  The elastic R6 route is also conservative and
as the temperature difference increases, the conservatism increases.

For the three loading conditions, the cracked-body CRIEPI driving force
results are smaller and a maximum of about 8% different from those obtained

(a)

0.8

1
1.2

1.4

1.6
1.8

2
2.2

2.4

0 0.2 0.4 0.6 0.8
a/t

K(
R

6)
/K

(F
E)

Delta T = 200
Delta T = 300
Delta T = 400

(b)

0.8
1

1.2
1.4

1.6
1.8

2

2.2
2.4

0 0.2 0.4 0.6 0.8
a/t

K(
R

6)
/K

(F
E)

Delta T = 200
Delta T = 300
Delta T = 400



from ABAQUS.  This is true for all crack sizes analysed.  It should be noted
that the present analyses used a more refined mesh.

Figure 5: Comparison of (a) inelastic and (b) elastic uncracked-body R6 route
s
JK  solutions with elastic-plastic cracked-body FE s

JK  solutions, for
radially non-linear temperature distribution.

Part-circumferential external surface crack
Table III shows the values of inelastic stress intensity factor from the R6
inelastic route and from the cracked-body route for the cylinder with a part-
circumferential external crack loaded by a radially linear temperature
distribution.  The results are at the deepest point of the crack.  All of the
uncracked-body stress and strain data were obtained from the CRIEPI results.
The R6 inelastic route is unconservative by about 3.7% when compared to the
cracked-body CRIEPI value.

TABLE III: Values of K derived from R6 inelastic route and from cracked-body FE
analysis. Cylinder with part-circumferential external surface crack

a/tϕ
s
σK

(MPa.m1/2)

s
εK

(MPa.m1/2)

Elastic-plastic
s
JK

(MPa.m1/2)

Cracked-body (CRIEPI)
s
JK (J)

(MPa.m1/2)
Radially linear temperature distribution with ∆T = 200°C

0.25 17.2 21.6 20.6 21.4

ϕNote that a/c = 0.5.
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CONCLUSIONS

For the cylinder with a fully-circumferential internal crack:

1. The inelastic uncracked-body R6 route is conservative when the thermal
load is applied as an axially linear or radially non-linear temperature
distribution, for all crack sizes considered.

2. The inelastic uncracked-body R6 route is generally conservative when
the thermal load is applied as a radially linear temperature distribution,
but is slightly unconservative in some cases.

3. The elastic uncracked-body R6 route is conservative for all of the
temperature distributions and crack sizes that were considered.

4. The CRIEPI cracked-body crack driving force results are consistently
smaller and a maximum of about 8% different from those obtained from
the ABAQUS cracked-body analyses.

For the cylinder with a part-circumferential external surface crack:

5.  The inelastic R6 route is unconservative by about 3.7% for the case of
thermal loading using a radially linear temperature distribution.
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