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ABSTRACT: This paper presents a new and relatively simple engineering method for
calculating the stress intensity factors for small-to-medium cracks emanating from a notch
under arbitrary loading. The formulation can be used in calculating the fatigue life of notched
components as well as in the shape optimisation problems with durability constraints. Several
examples are considered to demonstrate the advantages of the present method in comparison
with both existing approximate approaches and finite element techniques.

INTRODUCTION

Fatigue failures invariably initiate at some form of a geometrical discontinuity.
It is therefore not surprising to find that a great deal of fatigue related research
has been devoted to studying the behaviour of notched specimens. The fatigue
life prediction of notched components can be approached using fatigue crack
growth analysis. To characterize the fatigue crack growth rate we require a
knowledge of the stress intensity factors for a crack emanating from the notch.
The stress intensity factor for edge cracks can be expressed as:

lFK πσ= , (1)
where l  is the crack length, σ  is the applied stress and F  is the geometry
factor.

In the absence of an analytical solution for F, its determination requires
extensive numerical computations for each particular notch profile, crack
length and loading condition. Such a computational approach is not very
efficient for problems in which large numbers of crack configurations and/or
loading conditions need to be considered.

The aim of this paper is to develop a new and relatively simple method for
calculating the stress intensity factors for small-to-medium cracks at notches
under arbitrary loading including the shear loading. The present paper is based



on the assumption that cracks occurring in similar stress fields with similar
local geometries should produce similar stress intensity factors. This
assumption has been widely exploited in the past to build up approximate
solutions for the stress intensity factor for various geometries and loading
conditions. Some examples are given in [1] and [2].

The proposed method is simple and transparent and can be used for
numerous practical applications, viz: fatigue life calculations, and shape
optimisation problems with durability constraints. For the last class of problems
we require a knowledge of the stress intensity factors associated with cracks, of
variable lengths, located at all points along the boundary being optimised.

PREVIOUS APPROACHES

Broek [3] was amongst the first to suggest a simple engineering solution for
estimating the stress intensity factors for cracks emanating from a notch [3].
His idea was to consider the crack length as including the notch depth. Smith
and Miller [4] proposed a simple formula for the stress intensity factor of small
cracks at the root of a notch of finite depth. Another approximation was
suggested by Lukas [5]. Due to the origin of this approach it is expected to
provide good estimates for the cases in which 3<tK  (where tK  is the stress
concentration factor at the notch) i.e. blunt notches.

Karlsson and Backlund [6] used an analytical method to estimate K  values
for small cracks. The method was based on the work of Benthem and Koiter [7]
who gave a solution for an edge crack in a semi-infinite sheet with a linear
distribution of the tensile stress on the crack edges. A comparison of this
method with numerical results shows that there is a systematic difference
between equation given in [6] and the results of Newman [8]. This is not
surprising because the actual stress distribution was not a linear function and
the notch edge was not a straight line.

Schijve [9] developed another method in which the stress intensity factor
was written in the form:

lFK πσ= max (2)
where maxσ  is the peak stress.

The basic arguments for this method are as follows: Approximately similar
stress distributions in the uncracked condition are obtained if the same values



of maxσ  and ρ  apply (where ρ  is the notch radius). Kujawski [10] proposed to
replace the term maxσ  by the local stress distribution ( )lyσ  at the distance l
(crack length) to reach a better correlation with the numerical results of
Newman [8] and Nisitani [11]. Kujawski estimated that in these cases the
formulae differed from the numerical predictions by less than 5% [10].

Another general method for the calculation of the stress intensity factors is
the weight function method, which is based on a number of fundamental LEFM
relationships and solutions for references problems with a use of additional
hypotheses [12].  The weight functions have been obtained for a wide range of
geometries and loading conditions, in particular for a crack emanating from a
notch when applied stress is normal to the crack faces. However, the case of the
shear loading has not been considered.

In general, the approximate approaches considered above work well if
applied appropriately. However, the application of these approaches to different
loading conditions or notch geometries can lead to significant errors, as
demonstrated in the present paper. This finding is not surprising since
approximate solutions only partially account for the local stress distribution in
the vicinity of the notch and the local geometry (i.e. that the notch edge) is not
a straight line.

PRESENT APPROACH

In this section we will develop an approximate method for calculating the stress
intensity factors for an edge crack, with a length up to the order of the
characteristic dimension of a local structural detail. A crack is defined to be
small when ρ<<l , medium when ρ~l  and long ρ>>l , where ρ is the local
radius at the point of interests. In the current investigation only small and
medium length cracks are considered

Whilst for many structural components the fatigue life is dominated by the
time taken in growing from a “small”-to-a “medium” length crack, it should be
noted that there are instances when this is not true. This tends to occur in lightly
loaded structures with large initial defects.

In the method presented by Broek [3] to solve a problem of the type shown
in Figure 1a) we consider the ancillary problem of a crack emanating from a
hole having the same radius as the notch-tip, see Figure 1b). We also need to



determine the stress field associated with the (uncracked) notch as shown in
Figure 1a).

(a) (b)

Figure1. Initial and ancillary geometries

The stress distribution for several types of holes in an infinite body can be
obtained analytically based on the complex variable method or numerically.
After replacing the notch geometry and determining the stress field the stress
intensity factor for the edge crack can be related to the solution of the following
Fredholm equation [13] and [14]
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Here ρ= lb , the index Ii =  corresponds to the normal loading,
IIi = corresponds to the shear loading, and the functions it  represent the stress

distributions on the crack, iq  is an unknown function. With this formulation the
stress intensity factor can be expressed as:
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Using Gauss-Chebyshev quadrature we can replace the integral equation (3)
by a system of linear equations, viz:
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where iM  are given by Tweed and Rooke (1973) for mode I and in Kotousov
and Jones (2001), for mode II.
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With this formulation the stress intensity factor can be rewritten as
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Thus, the problem of determining the stress intensity factor can be reduced
to the solution of a system of linear algebraic equations. It is a straightforward
task to programme the system of equations and to use a computer library
routine to invert the resulting NN ×  matrix. N  may typically be chosen to be
around 5-30, although more integration points will be needed when high
accuracy is required and the complexity of the right hand side of equation (3)
(i.e. the stress gradient) is expected.

EXAMPLES

To illustrate this approach we will first consider a crack configuration that has
been widely treated in a number of previous investigations; viz: an elliptic
notch with a crack in an infinite plate subjected to remote tensile loading acting



normally with respect to the crack faces, see Figure 2. The solids lines represent
the present solution; Kujawski’s [10] solution for this problem is shown as the
doted lines. The filled circles with the error range are the solution given in the
Stress Intensity Factors Handbook [15]. The squares, diamonds and triangles
represent the values obtained by the authors using FE method for ac  values of
0.5, 1 and 2 respectively.  Here we see that all solutions are in good agreement.
Note that for the case of 1=ac , the solid line (present method) represents the
benchmark solution because this is the exact analytical solution of this problem.

The method presented by Schijve [9] and further developed by Kujawski
[10] can give significant errors if applied to a different loading configuration.
To demonstrate this let us consider the notch configuration discussed above
with of tensile remote load acting parallel to the crack. The results for three
shapes of the ellipse, ac  equal to 0.5, 1 and 2 are shown in Figure 3. Here we
see that the discrepancies between the present work and that of Kujawski
become significant at relatively small ratios of the crack length to the notch
radius. Again, at 1=ac  (diamonds) the present values represent an exact
analytical solution of the problem.

Figure 2. Comparison of approximate analytical methods: Kujawski (1991) (dot
lines), present approach (solid lines) and numerical results (symbols) for

various ac  ratios.
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Figure 3 Comparison of approximate solutions; Kujawski (1991) (dot lines),
present approach (solid lines) and numerical results (symbols) for various ac

ratios.

CONCLUSION

The paper presents a simple engineering method for calculating of the stress
intensity factors for an edge crack at a notch. The results were compared with
numerical calculations, which have shown a good agreement. The present
method can give significant computational advantages over a direct finite
element technique in fatigue life calculation and shape optimisation problems,
especially where a large number of crack configurations and/or loading cases
need to be considered. Our preliminary results show that the computational
time for fatigue life and shape optimisation problems with durability constraints
can be reduced by approximately 1000 times.
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