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ABSTRACT: In this paper, extensions of the reference stress based method to estimate J
and COD for through-wall cracked pipes to general problems are given.  These problems
include circumferential through-wall cracked pipes under combined pressure and bending
or under combined axial tension and bending; complex cracked pipes under combined
axial tension and bending; axial through-wall cracked pipes under combined pressure and
bending. For these cases, the proposed reference stress based J and COD estimates are
validated against published test data and detailed 3-D FE results to show their accuracy
and robustness.

INTRODUCTION

Pressurised piping is an important element in power plants, and thus
application of fracture mechanics analysis to such pressurised piping is
important in structural integrity assessment of plant components. One
example of such application is the Leak-before-Break (LBB) analysis of
piping. In general, application of the LBB procedure requires two steps [1].
Firstly, the crack length corresponding to the (assumed) detectable leakage
rate should be calculated for a through-wall cracked (TWC) pipe. For this
step, engineering methods to estimate the crack opening displacement
(COD) and the leak rate are needed.  The second step is to perform the pipe
fracture stability analysis, which requires the estimation of the J-integral.

One popular method to estimate J and COD for cracked components is
the reference stress method [2]. Due to its simplicity, it can be easily
extended to complex geometries and loadings, which offers significant
advantages in practical application. This method, however, suffers from its
accuracy, possibly resulting from the definition of the reference stress.  To
improve its accuracy, authors have recently proposed the enhanced reference
stress approach [3], where the key point is in the definition of the reference



stress, i.e., the reference stress is defined using the optimised reference load,
providing best estimates of J, instead of the plastic limit load.

This paper summarises recent works on application of the enhanced
reference stress approach to estimate J and COD for through-wall cracked
pipes.

REFERENCE STRESS BASED J AND COD ESTIMATES
For a cracked component, the reference stress based J estimation equation is
given by [3]
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where Je is the elastic component of J, Je=K2/E´; ( )21 ν−=′ EE  for plane
strain and EE =′  for plane stress; E denotes Young's modulus; and εref

denotes the true strain at the reference stress σref, determined from true
stress-strain data; σy denotes the 0.2% proof or lower yield stress of the
material of interest; Q denotes the (generalised) load; and ORQ  denotes the
optimised reference (generalised) load. Note that the optimised reference
load is generally different from the plastic limit load.

The COD (δ), on the other hand, can be estimated from
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where δe denotes the elastic component of δ.  In Eq. (2), (δ/δe)Lr=1 denotes
the value of (δ/δe) at σref=σy, calculated from the first equation in Eq. (3).
The strain hardening index n1 in Eq. (2) should be estimated from
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where σu,t and εu,t denote the true ultimate tensile stress and percentage
uniform elongation at σ=σu, respectively.

The enhanced reference stress based J and δ estimates require only two
values: the elastic component and the optimised reference load QOR. With
these two parameters, J and δ can be estimated using stress-strain data of the
material of interest.  Noting that elastic J and δvalues can be easily obtained,



a central point of the proposed method is then to determine the optimised
reference load.

In the subsequent sections, solutions for QoR are given for TWC pipes
under various loading conditions and for complex cracked pipes under
combined bending and tension, together with comparisons with the detailed
FE results and experimental pipe test data.
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Fig. 1. Schematic illustration of (a) circumferential through-wall crack, (b)
axial through-wall crack and (c) complex crack.

CIRCUMFERENTIAL THROUGH-WALL CRACKS

Single Loading (Axial Tension, Internal Pressure, Global Bending)
For circumferential TWC pipes under axial tension P, internal pressure p or
global bending M (Fig. 1a), the optimised reference loads are given by [4]
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Resulting COD predictions are compared with pipe test data in Fig. 2, which
shows excellent agreement. In Fig. 3, the maximum loads, predicted
according to the proposed method, are compared with pipe test data and the
R6 results [5]. It shows that the proposed method gives less conservative
maximum loads. More detailed information on pipe test data and more
results can be found in Refs. [4, 5-8].
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Fig. 2 Comparison of the COD predictions according to the proposed
method with pipe test data [4].

Combined Loading
For a combined axial tension and global bending, the optimised reference
load solution can be found from the following yield locus [10]:
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where POR and MOR are optimised reference load solutions for single
loading, see Eqs. (4) and (6).  On the other hand, for combined internal
pressure and global bending, the similar yield locus can be used [11]:
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where pOR denotes the optimised reference pressure solution, given in Eq.
(5).

Fig. 4 compares the estimated J and COD with the results from pipe test
data and detailed elastic-plastic FE analysis for combined bending and



tension, showing excellent agreement. More results can be found from Refs.
[10,11].
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Fig. 3. Comparison of predicted maximum moment from the R6 method and
the proposed method with experimental data [9].
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Fig. 4. Comparison of J and COD from FE results and pipe test data for
combined tension and bending, with those estimated using the proposed
method [10].

AXIAL THROUGH-WALL CRACKS
Consider axial TWC pipes under internal pressure p (Fig. 1b). Dimension
for the pipe and the crack is also given in Fig. 1b, and the normalised crack
length parameter ρ, defined by
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Noting that a global bending moment has only a slight effect on plastic limit
load for axial TWC pipes [12], the proposed J and COD estimation
equations for internal pressure can be equally applied to combined pressure
and global bending loading.

Fig. 5 compares the estimated J and COD with the results from detailed
elastic-plastic FE analysis for combined pressure and tension, showing good
agreement. More results can be found from Ref. [13].

COMPLEX CRACKS
A complex crack consists of a fully circumferential, internal surface crack in
a pipe and a through-wall crack in the same plane as the surface crack (Fig.
1c). The optimised reference loads are given by [14]
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Relevant dimension can be found from Fig. 1c.
Fig. 6 compares the estimated CODs using the proposed method with

pipe test data for complex cracked pipes under bending, showing good
agreement. More results can be found from Ref. [14].
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Fig. 5. Comparison of FE J and COD results for axial TWC pipes under
combined internal pressure and bending with the proposed method [13].
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Fig. 6 Comparison of the COD predictions according to the enhanced
reference stress method with pipe test data for complex cracked pipes under
bending [14].

CONCLUSIONS
This paper extends the reference stress based method to estimate J and COD
for TWC pipes to general problems, such as combined pressure and bending
or under combined axial tension and bending; complex cracked pipes under
combined axial tension and bending; axial cracked pipes under combined



pressure and bending. Validation against extensive published test data and
detailed 3-D finite element results shows their accuracy and robustness.
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