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ABSTRACT: Specific requirements on the specimen geometry necessary for the determi-
nation of fracture mechanics parameters for polymers by using the instrumented Charpy
impact test are summarized. As examples, the influences of the specimen thickness and a/W
ratio are considered. For characterizing the geometry independence of fracture mechanics
parameters, geometrical factors are used, which make possible an estimation of the re-
quirements on the specimen geometry without any further experiments. For polymers, the
experimentally determined geometrical factors vary in a wide range; this means that the
use of constant geometrical factors must cause a pronounced under- or overevaluation of
the requirements on the specimens. The relationships between geometrical factors and
fracture mechanics parameters, which were found to be generally valid for polymers, are
independent of the kind of loading (static, impact-like) and the crack propagation behav-
iour (stable, unstable).

BASIC REMARKS

The geometry dependence of fracture mechanics parameters in terms of B, a
and (W–a) is characterized independently of the fracture mechanics concept
(LEFM, J-integral or CTOD concept) by a transition from geometry-
dependent (KQ, JQ and δQ) to geometry-independent values in terms of a
universal brittle-to-tough transition (BTT). The BTT is connected with a
change from a predominant plane stress state to a predominant plane strain
state. The values of B, a and (W–a), for which KQ, JQ and δQ are constant for
the first time, are the minimum specimen thickness, minimum crack length
and minimum ligament length (Bmin, amin and (W–a)min). Furthermore, be-
cause of the low heat conductance of polymers in comparison with metallic
materials, the change from isothermal to adiabatic behaviour is important,



especially for such polymers which are strongly plastically deformed under
load.

For a generally valid description of the geometry dependence of fracture
mechanics parameters, geometrical criteria with the factors ε, β and ξ were
introduced. These factors make possible an estimation of the minimum re-
quirements on the specimen geometry without any experimental determina-
tion of the influence of the geometry on fracture mechanics parameters. The
estimation of minimum requirements on specimen size and crack length is
performed according to:
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in the case of the J-integral concept with the geometrical factor ε,
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in the case of the CTOD concept with the geometrical factor ξ  and
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in the case of LEFM with the geometrical factor β, where σy is the yield
stress.

For metallic materials, the geometrical factors are fixed to ε = 25 [1], ξ =
50 [2] and β = 2.5 [3]. These values are also often used for polymers or are
taken into account in standard drafts [4]. However, also for metals, these
values are not universally valid. For example, experimental values of ε in
the range from 25 to 200 [5,6] are known.

This fact and the fundamental differences between the mechanical be-
haviour of metals and polymers result in the conclusion that the require-
ments on minimum specimen size defined above can not be transferred self-
evident to polymers, as it should be shown in the following sections.

INFLUENCE OF SPECIMEN GEOMETRY ON FRACTURE
MECHANICS PARAMETERS

The influence of the geometry on fracture mechanics parameters related to
both resistance against stable and unstable crack propagation can be char-
acterized experimentally by variation of the specimen configuration (com-



pact tension (CT), single-edge-notched bending (SENB), single-edge-
notched tension (SENT) specimens etc.) and the specimen size, especially
the thickness B and the crack length a (a/W ratio), as well as the notch ra-
dius. Exemplary in this study, the influences of specimen thickness and a/W
ratio are considered. More detailed information can be found in Ref. [7].

Fracture Mechanics Parameters as a Function of Specimen Thickness for
Various Polymers
The determination of the influence of specimen thickness on the material
parameters is one of the most relevant fields in fracture mechanics material
characterization, because the independence of the thickness is an important
criterion for the transferability of parameters determined using specimens to
components. In Figure 1, various J values are summarized obtained at room
temperature. Figure 1a shows the dependence of J values on specimen
thickness JQd = f (B) in the case of unstable crack propagation (PP, PVCC
and cast PA). In Fig. 1b, the influence of the specimen thickness on the
technical crack initiation values J0.2 = f (B) is illustrated for polymers
showing stable crack propagation. In any case, values of Bmin can be deter-
mined experimentally.

Influence of Temperature on the Requirements on Specimen Dimensions
Figure 2 shows the influence of the temperature on JQd in dependence on
thickness for PC under impact loading conditions. With increasing tem-
perature, the minimum specimen thickness increases from Bmin = 1.5 mm at
0 °C and Bmin = 2 mm at 20 °C to Bmin = 3 mm at 40 °C [8]. This change in
requirements on specimen thickness in a relatively small temperature range
(∆T = 40 °C), which approximately corresponds to the temperature range of
application of PC, is a polymer-specific phenomenon that can be clarified
by the assumption of a generalized brittle-to-tough transition (BTT). It is
assumed that the BTT’s corresponding to the loading conditions (tempera-
ture, speed etc.), the material behaviour (mechanism of deformation, con-
centration, particle size and distance etc.) and the geometry (specimen
thickness, notch radius etc.) are interdependent due to the polymer-specific
viscoelastic–viscoplastic behaviour. As a consequence, a variation of the
loading conditions leads to a change in the BTT, as it is shown in Figure 2
using the variation of the temperature as an example. Here, the change of
the BTT is due to a change of the deformation mechanisms. Thus, the
minimum specimen thickness increases. Therefore, if limits of application
should be fixed and the transferability of parameters to components should
be evaluated, these changes must be taken into account.
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Figure 1: JQd values related to resistance against unstable crack propagation
(a) and J0.2 values related to resistance against stable crack initiation (b) as a

function of the specimen thickness and the material
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Figure 2: Influence of the temperature and the specimen thickness on the
JQd values for polycarbonate

Experimental Determination of Maximum Stable Crack Growth
For predominantly unstable crack propagation, a variation of the a/W ratio,
i.e. the initial crack length in the case of a constant specimen geometry,
leads to relationships that are qualitatively comparable to that from a varia-
tion of specimen thickness. If stable crack propagation occurs, for example
during R-curve measurements, the a/W ratio continuously changes. On the



one hand, because the J-integral is − strictly speaking − only defined for a
stationary crack, the amount of stable crack growth must be limited by defi-
nition of a maximum valid amount of stable crack growth ∆amax ensuring J-
controlled crack propagation. Guidelines for it were formulated for example
in the standard draft of ESIS TC4 [4]. On the other hand, as it was shown in
Ref. [9], no limiting of the amount of stable crack growth is necessary, if J
values are corrected regarding the finite stable crack growth ∆a and the in-
fluence of the instationary stress field ahead of the crack tip. J values cal-
culated using an iterative procedure and J values determined using an ap-
proximative method for R-curve determination suggested by Seidler, in-
cluding a correction of the crack growth, are in very good agreement [9,10].

Nevertheless, the influence of specimen geometry on J and CTOD values
remains. With increasing amount of stable crack growth, the external energy
cannot be dissipated any longer into a large region of the specimen by an
increasing plastic-zone size because of interactions between the plastic zone
and the specimen boundary. Furthermore, the crack propagates into the
pressure zone of the specimen. This leads to an increase of the energy den-
sity and the local deformation in the spatially finite plastic zone. As a result,
a strong increase of the crack resistance at a certain amount of stable crack
growth, the maximum valid amount of stable crack growth ∆amax, occurs,
which corresponds to the transition from a plane strain to a plane stress state
(Fig. 3). Thus, valid J values can only be determined if ∆a ≤ ∆amax.
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Figure 3: Experimental determination of the maximum valid amount of
stable crack growth under impact loading using ABS as an example



REQUIREMENTS ON SPECIMEN GEOMETRY FOR POLYMERS

In order to consider the influence of the material on the geometrical criteri-
ons (equations 1–3), the experimental determination of the geometrical fac-
tors on the basis of the dependence of thickness or a/W ratio (Figs. 1–3) was
found to be suitable. From such measuring data, correlations of the geomet-
rical factors ε, β and ξ, and the related fracture mechanics parameters can be
determined (Figs. 4 and 5) which are generally valid for polymers, because
of their independence of the kind of loading (quasi-static/impact-like) and
the material behaviour (stable/unstable) [9,11].

From the double-logarithmic plot of the geometrical factor ε versus the
‘critical’ J values (JIc, JId, J0.2 and Jmax) in Fig. 4, a general connection can
be derived:
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Analogously, for ξ as a function of the ‘critical’ δ values (δId and δ0.2)
and for β as a function of ‘critical’ K values (KIc and KId) (Fig. 5), following
equations result:
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By fitting of A1, B1 and C1, and A2, B2 and C2, the following empirical con-
nections can be derived:
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These equations represent the essential basis for the estimation of the mini-
mum specimen size. Owing to the wide range of experimentally determined
geometrical factors (ε = 5.2−1220, ξ = 10−139 and β = 0.24−26), the as-
sumption of constant values of ε = 25 [1], ξ = 50 [2] and β = 2.5 [3] would
lead to a pronounced under- or overvaluation of the requirements on the
specimen geometry. In principle, equations (7–9) make possible a material-
specific estimation of the requirements on specimen geometry within the
complete toughness range ranging from linear elastic behaviour with unsta-
ble crack propagation to elastic–plastic behaviour with stable crack propa-
gation.
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Figure 4: Geometrical factor ε versus J values for different loading condi-
tions and crack propagation behaviour (a), and for various materials (b)
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Figure 5: Geometrical factor ξ as a function of the CTOD values δId, δ0.2 (a)
and geometrical factor β as a function of the stress intensity factor KIc, KId

(b) for polymers

Strictly speaking, the use of such empirical relationships is limited to the
range of values considered. Therefore, a noticeable generalization is neces-
sary. Assuming that A1 and A2 are independent of J and B1 and B2 are inde-
pendent of δ, i.e. A2 = –1 and B2 = –1, it follows:

11Nmm370 −− ⋅= Jε  and (10)



11mm22 −− ⋅= δ.ξ . (11)

By replacing the initial with the effective crack length aeff = a + ∆a and
using equations (1), (2), (10) and (11), following requirements on the
maximum valid amount of stable crack growth for J–R and δ–R curves can
be derived:

y

1Nmm703)(
σ

−

−−≤∆ aWa  and
(12)

mm22)( .aWa −−≤∆ . (13)

Thus, the basis of a material-specific criterion of valuation for fixing the
maximum valid amount of crack growth values is established.
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