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ABSTRACT 

The micromechanical hardening rules developed by Cuitino and Ortiz [Modelling Simul. Muter. Sci. Eng. 1 
(1992) 225-2631 and Repetto and Ortiz [Acta muter. 45, 6 (1 997) 2.577-25951 are modified, and they are 
employed in the analysis of cyclic hardening behaviour of a Cu single crystal. A crystalline FEM theory which 
incorporates this hardening rule is presented. The validity of the presented theories are examined by comparing 
hysteresis loop shape parameters proposed by Abel [Muter. Sci. Engng. 37 (1979) 187-2001 of the simulation 
result and ones of the experimental result. As results, the followings are found: i) It can be said that the 
constitutive relation employed in our simulation can be used in cyclic hardening behaviour analysis under the 
chosen condition because they give a good account of the changing nature of hysteresis loops qualitatively. ii) 
In our simulation, the cyclic state at which the shear deformation in the secondary systems increases rapidly 
coincides with the one at which Bauschinger energy parameter p, reaches its maximum. This leads to the 
assumption that PSB formation begins when the finite shear deformation occurs in the secondary systems. 

INTRODUCTION 

Experimental data have conclusively demonstrated that fatigue crack nucleation is mediated by surface 
roughness which arises at the intersection between the surface and PSBs. The formation of PSB is an essential 
mechanism for fatigue fracture and the fatigue limit can be linked with the lower limit stress or strain for the 
formation of PSB. Strain localization and a change of dislocation structure occur after cyclic hardening is 
saturated. These two phenomena influence each other, and they are the prerequisite for PSB formation. 

Success in developing a quantitative understanding of crack initiation process has been somewhat limited. 
Repetto and Ortiz [ l ]  developed a micromechanical finite element model which can simulate the surface 
roughening mentioned above. In their approach, they entirely neglected the initial transient and presumed the 
PSB to be saturated from the outset. The authors [2][3] showed strain localization in the course of loading 
cycles can be simulated by using crystalline FEM theory. Because the hardening law used in these studies was 
formulated phenomenologically, it was impossible to simulate the interaction between the change in dislocation 
structure and strain localization. It is needed to develop a constitutive model of cyclic hardening stage which 
emanates directly from a clear micromechanical picture in order to understand the micromechanical aspects of 
PSB formation process. 

In this paper, the micromechanical models developed by Cuitino and Ortiz [4] and Repetto and Ortiz [ l ]  are 
modified so that we can employ them in the analysis of cyclic hardening behaviour. A crystalline FEM theory 
which incorporates this model is presented. We examine the propriety of the presented model and FEM theory 
by simulating cyclic hardening behaviour of Cu single crystal. 

CONSTITUTIVE RELATION 

Strain Hardening during Monotonic Loading 

Throughout this paper, the label (a) , (b)  identifies the specific slip system under consideration, and v ( t )  denotes 



the value of v at time t .  We assume that the main resistance to dislocation motion is posed by secondary 
dislocations piercing the slip plane, or forest dislocation during cyclic hardening process. Forest dislocations 
can be idealized as point obstacles. Pairs of such point obstacles arrest dislocations, which require a threshold 
resolved shear stress S to overcome the barrier. The value of S changes by the change of the length of the link. 
Since the distribution of point obstacles within the glide plane is random, S is a random variable. The 

probability density function T ( s , t )  and the distribution function p(s , t )  are given by Cuitiiio and Ortiz [4] as 

where n'"'( t )  is the area density of forest dislocation intersections with the glide plane of system ( a ) ,  a a 
coefficient of order of 0.3, p the shear modulus, b the length of the Burgers vector. 

Let f ( s , t )  denotes the probability density of S after the resolved shear stress has been increased monotonically 
to ~ ' " ' ( t ) .  Ortiz and Popov [5] derived a kinetic equation governing the evolution of f ( s , t )  . Cuitiiio and Ortiz 
[4] obtained analytical solutions of this equation. The solution is 

where H[.] is the Heaviside step function. This solution determine the analytical form of the self-hardening 
curve. Cuitiiio and Ortiz [4] derived the self-hardening modulus in system ( a ) ,  h'"'(t) as 

where, p'"' is the dislocation density, and h:"'(t) and zT' ( t )  are given as 

n'"' is a function of the dislocation densities in all remaining systems. In the same manner as Cuitiiio and Ortiz 
[4], we assume that the form of n'"' is given as 

a'"*' is a, when a = b ,  a,  when the dislocations in two systems form no junctions or Hirth locks or co-planar 
junctions, a,  when they form glissile junctions, and a3 when they form sessile Lomer-Cottrell locks. The values 
of a, ,a,,a, , a3 are dependent on the stacking fault energy and they are determined experimentally. 

*'"' = C ( h ) a ' " h ' p ' D '  ( 5  1 

Assuming that the change in dislocation density is mainly caused by the breeding by cross-glide and pair 
annihilation, the equations of evolution for the dislocation densities are given by Cuitiiio and Ortiz [4] as 

where p,s,, is the saturation density at which the rate of annihilation balances the rate of production, Y,~,, the 
saturation shear strain, p!' the initial dislocation density in system ( a ) ,  and y'"' the shear strain in system ( a ) .  

When we define the flow stress g'"' as the elastic limit, the increase of g'"' due to the shear deformation in 
remaining systems can be neglected (Cuitiiio and Ortiz [4]). The flow rule is given as 

g'") = h ( U U ) .  ( U )  Y (7)  

Strain Hardening during Reloading 

The Bauschinger effect was modeled within the context of the forest theory of hardening by Ortiz and Popov 
[5]. They argued that reversed slip gradually causes the dislocation / obstacle arrangement to dissolve, with the 
result that f (s , t )  approaches the virgin distribution ?(S) when the reverse slip strain in system ( a )  exceeds 
y:a'. This causes the Bauschinger effect. 



Assuming that f ( s , t )  during reloading remains of the form of Eq. (2), Repetto and Ortiz [ l ]  derived the 
evolution law of the critical resolved shear stress in system ( a )  for reloading, g: ' .  The result is 

where, z(,ix is the maximum resolved shear stress in system ( a )  during preloading. When y:,",' = 0 this equation 
gives g:) = z", , whereas for y:,",'/yL!) >> 1 it gives g:) + 0 .  

It is a well-known experimental result that p'"' increases in the course of loading history and eventually a 
saturation stage is reached wherein p(")  attains a constant. During the transient stage, the ratio of yield point 
to stress amplitude decreases gradually. Let y:: denotes the accumulated shear strain in system ( a ) ,  

I' l jJ"'(s))ds. In our simulation, we use YE.: instead of y'"' or in Eqs. (6) and (8). By these modifications, 

the changing natures of p'") and stress-strain relation mentioned above can be expressed. 

Constitutive Equations 

s=o  

The constitutive equation used in our analysis is based on the rate-dependent crystalline plasticity theory 
developed by Peirce, Asaro and Needleman [6]. It gives the relation between the Jaumann rate of Kirchhoff 

stress rate 2, the shear rate in system ( a )  j'"' and the total rate of stretching, D as 
V 

n 

where 
pc") = 1 @ m*'"' + m""' @ , W(") = - ( p  1 @m""' -m*'") @ S * ( " ) )  

2 2 (10) 
; * l"  1 = F*s(") = F*-"m("), p(") = w'"'z-zw'"' 

9 

F* is the elastic deformation gradient which represents elastic stretching and rigid rotation; S(") and m'"' are 
the unit vectors in the direction of slip and the unit normal vector of the slip plane of slip system ( a )  in the 
undeformed configuration; L is the elastic moduli tensor. 

We adopt the convention of differentiating between the positive and negative slip directions for each slip system, 
whereupon the shear rates can be constrained to be nonnegative. We define the flow stress g'"' as the elastic 
limit. In this case, we can use the form of j("' proposed by Cuitiiio and Ortiz [4] 

where, m is the material rate sensitivity exponent and j ,  is the reference shear rate. The evolution law of g'") 
is given in Eqs. (7) and (8). 

NUMERICAL METHOD 

Finite Element Method 

Boundary value problems in this theory can be solved using the finite element method. In the same manner as 
Pierce, Asaro and Needleman [6], analysis is based on the Lagrangian formulation with the initial unstressed 
state taken as reference. Also adopted is the convected coordinate formulation (Needleman [7]). Hereafter, the 
contravariant and covariant components of tensors or vectors on the deformed convected coordinates is 
abbreviated to 'cont. comp.' and 'cov. comp.'. Similarly, the components on the reference Cartesian coordinates 
is abbreviated to 'ref. comp.'. 

Time Integration Algorithm 

In order to calculate the cyclic deformation behaviour during fatigue process over great many loading steps, an 
iterative time integration algorithm by which the residual force is dispelled at every step has been developed. 

From Eq. (9), the resolved shear stress and its rate can be written as 





[S,,,,] in Eq. (22) corresponds to the stiffness matrix. 

Determination of the Active Slip Systems 

In the previous subsection, the set of active systems has been presumed known. Let A denotes the active system 
set. A can be determined by the iterative algorithm proposed by Cuitiiio and Ortiz [4]. The procedure is as 
follows: i ) A  is initialized as NULL; ii) Compute Ay'"' based on current A; iii) Update state variables based 
on current Ay'"; iv) If T ( " ) I , + ~  c g(')I,+rn for V ( a )  P A exit; v) If not T ( " ) I , + ~ ,  g(')l,+Ar for V ( a )  P A ,  add most 
loaded system to A and repeat ii)-v). 

SIMULATION OF CYCLIC HARDENING BEHAVIOUR 

Nature of Cyclic Hardening Behaviour 

Stress half amplitude o,, and 'Bauschinger energy parameter', p, proposed by Abel [8] are good indicators of 
the changing nature of the hysteresis loops during cyclic hardening stage. As shown in Figure 1, p,; is defined 
as 

where, A€,,, is the nominal plastic strain amplitude, o the nominal stress and E the nominal (total) strain. p, 
reflects the yield lowering as well as the strain hardening characteristics. The value of p, approaches zero when 
the hysteresis loop shape approaches that of a parallelogram, whereas the more pointed the hysteresis loop shape 
the higher is the value of p,. 

Abel [8] performed the constant plastic strain amplitude cyclic loading tests on Cu single crystals. He found 
the followings: i) At the first few cycles, rectangular shaped hysteresis loops were produced with negligible 
values of p/; ;  ii) With further cycling, cyclic hardening leaded to increased G,, and a rapid growth in p,; iii) 
When p, had the maximum value, slip lines were observed to appear on the specimen surface, and thus this 
cyclic state coincided with the beginning of PSB formation; iv) With further cycling, strain localized and PSBs 
were developing; v) The development of PSBs finished when o, reached its maximum. 

Model Perspectives 

We apply the theory mentioned in the previous sections to the simulation of cyclic hardening behaviour of a Cu 
single crystal subjected to constant strain amplitude pulsating cyclic loading. When the simulation results give 
a good account of the changing nature of o,, and p, mentioned previous subsection, it can be supposed that it 
is good to employ the theory in the cyclic hardening behaviour analysis. 

In this paper, we focus on the response during the period before p, reaches its maximum. In this case, we can 
approximate that deformation of a crystal is uniform, therefore, the simulation is performed using a single eight- 
node brick finite element. The tensile direction is aligned with the element axes. The two loaded faces of the 
cube are constrained to remain parallel to each other and perpendicular to the loading axis. The elasticity of the 
crystal is taken as isotropic. The values of the material constants employed in the simulation are listed in Table 
1. Except for y,yu, , the properties of pure copper are used in Table 1. In order to reduce the calculation time, the 
value of y,$", in Table 1 is selected so that the dislocation density in all active systems becomes constant by about 
200 cycles. This is about 10 times as fast as that of real material. 

We shall distinguish each slip systems by the identifier listed in Table 2. The loading direction is set so that it 
deviates slightly from [ 1 121. Schimid factors of each systems are shown in Table 3. C5 is the primary system 
and D4 is the conjugate one. 

The parameter 8 in Eq. (13) is 0.5. End displacement is controlled so that the nominal strain rate is 10"[1 / S ] .  

The nominal strain amplitude is 2.04 X lo-'. The number of loading cycles is 230. We call the period from the 
beginning of the loading to the first maximum tensile loading 'the 0th cycle', and the period from the i th 
maximum tensile loading to the i + 1 th maximum tensile loading 'the i th cycle'. 



Simulation Result and Discussion 

Figure 2(a) shows the computed nominal stress-strain curves during the period from the 0th to the 20th cycle, 
and Figure 2(b) shows ones during the period from the 2 1 st to the 230th cycle. Figure 3 and 4 show the relations 
of number of cycles to CT, and p,;. The followings are shown in these figures. i) Initially CT,, increases rapidly 
and reach a maximum at the 3rd cycle, then decreases slowly and reach a minimum at the 20th cycle. ii) 
Rectangular shaped hysteresis loops were produced with negligible values of p,< at the first 20 cycles. iii) From 
the 20th to the 120th cycle, the hysteresis loop shape becomes more pointed, and both CT,, and p, increase. iv) 
At the 120th cycle, p,. reaches its maximum value whereas CT,, continues to increase. v) At the 150th cycle, D,, 

reaches its maximum value. 

Let S,, and p, denote the normalized values of CT,, and plc ,  and denote the normalized number of cycles. 

S,,, p,< and are normalized between the values corresponding to the minimum and the maximum values of 
G,,. In the experiment of Abel [8], plastic strain amplitude was held 2.2 x In this experiment, single-slip 
direction was employed and dislocation multiplication was saturated after more than lo3 cycles. This strain 
amplitude corresponds to the one of our simulation, but the loading direction and the value of Y,~,,, are different 
from ones employed in our simulation. Because of these differences, we cannot make a quantitative comparison 
of the experimental and our simulation results. Therefore, we shall compare the relations of m to S,, and p,. 
Figure 5 shows the relation of S,, to W, and Figure 6 shows the one of p, to v. These figures show that the 
changing nature of CT,, and p, gives a good account of the nature of the experimental result qualitatively except 
for first few cycles. From these results, it can be said that the constitutive relation employed in our simulation 
can be used in cyclic hardening behaviour analysis under the chosen condition. 

- 

The relation of cycle number to the accumulated shear strain yzl.  of each systems are shown in Figure 7. This 
figure shows that the shear deformation on the secondary systems, A6, A3, Dl and C 1, gradually increase as 
cyclic hardening proceeds, and this increase becomes more notable approximately at the 100th cycle. This cyclic 
state coincides with the one at which 0, reaches its maximum. According to the experimental results, PSB 
formation begins at this stage. These results lead to the assumption that PSB formation begins when the finite 
shear strain occurs in the secondary systems. The formation of PSBs is a poorly understood phenomenon. In 
many potent theories (e.g. Kuhlmann-Wilsdorf and Laird [9]), they have assumed that PSB is formed from the 
dislocation structure made by the activation of secondary systems. The inference mentioned above drawn from 
our simulation result is consistent with these theories. 
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TABLE 3: Schmid factors of slip systems 

1 A2 0.0002 17 7 B2 0.000000 
2 A6 0.272274 8 B5 0.000000 
3 A3 0.272057 9 B4 0.000000 
4 Dl 0.272057 10 C l  0.272274 
5 D6 0.136083 1 l C5 0.408357 
6 D4 0.408140 12 C3 0.136083 

I 1 I 1 l 

2 0 ’  

Figure 1: Bauschinger energy parameter 

TABLE 1: Material Properties 

Young’s modulus E 
Poison’s ratio v 
a of Eq. (1) 
Length of Burgers vector b 
Po in Eq. (16) 
m in Eq. (16) 
Initial value of g in Eq. (1 6) 
Po in Eq. (9) 
P,, in Eq. (9) 
Y,, in Eq- (9) 
a, for a(”*) in Eq. (8) 
a, for a(a*) in Eq. (8) 
a, for a(oh) in Eq. (8) 
a3 for a(a*) in Eq. (8) 

122.5E3 (MPa) 
0.33 
0.3 
2.56E-l0 (m) 
1 .o 
0.01 
2.0 (MPa) 
1E12 
1E14 
0.00 1 
7.5E-4 
5.7xa0 
l 0.2xao 
1 6 . 6 ~ ~ ~  

TABLE 2: Slip systems of f.c.c. a crystal 

n 
(d 

5 1 0 -  
v 

m 
v) 

g 0 -  
v) 

E: 
(d .- 
€-lo - 

-20 - 
I 1  I l l I 1  
0.0 0.5 l .o 1.5 2 . 0 d  

Nominal strain 

(a) The 0th -- 20th cycle 
- 

20- 

n 
(d 5 10-  
v 

m m 

g 0 -  - m 

m 
C .- 
€-IO - 

-20 - 

T 

I 

L 

00 0.5 10 1.5 2.0~10’ 
Nominal strain 

(a) The 2 1 st -- 230th cycle 

Figure 2: Calculated nominal stress-strain curves 
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Figure 3: Calculated time history of stress half 
amplitude U,, 
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Figure 4: Calculated time history of Bauschinger 
energy parameter p, 
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Figure 6: Comparison of the calculated and 
experimental results of Bauschinger energy 
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Figure 7: Calculated time history of the 
accumulated shear strain yz:, of each systems 

Figure 5:  Comparison of the calculated and 
experimental results of stress half amplitude U,, 


