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ABSTRACT

Stress concentrations are often responsible of fatigue failure on industrial components. Fatigue strength
prediction for long life is difficult on real components due to stress gradients and more generally due to
complex volumetric stress distribution (gradients). This paper presents the concept of volume influencing
fatigue crack initiation V* proposed by Palin-Luc et al. [1] and its use with an energy based fatigue criterion
for constant amplitude fully reversed multiaxial loadings. This concept is also used with the mesoscopic
approach proposed by Papadopoulos [12]. Predictions of these two criterions are in very good agreement
with experimental multiaxial fatigue data showing that the volume influencing fatigue crack initiation can
be used as a general concept.

INTRODUCTION

Designing metallic components against fatigue is still a difficult problem to handle for engineers since the
transfer of fatigue data from specimen to component is an arduous task. Two major phenomenons are
responsible for that : the stress gradient effect and the so called "size effect". In literature, many experiments
show the influence of notches on the fatigue strength but the service loaded components have seldom a well
defined notch factor. Consequently, the use of data from laboratory tests has to be done very carefully
[4],[5]. Furthermore, it is well known, in high cycle fatigue, that the load type has a significant influence on
fatigue strength (endurance limits in traction and in bending are usually different). A precise design against
fatigue requires a method able to consider both the volumetric distribution of stresses and the loading kind.
Several methods have been proposed in literature to  take into account the stress gradient : the critical layer
[6], the stress gradient of Papadopoulos [7], the V90% method of Sonsino et al. [4] and the energy based
approach of Palin-Luc and Lasserre using the concept of volume influencing fatigue crack initiation.
Between these approaches the last one is the only one, according to the authors, able to predict experimental
differences between endurance limits in plane bending and rotative bending. This criterion is presented here
together with the concept of the volume influencing fatigue crack initiation V*.

In high cycle multiaxial fatigue many others criteria are not based on an energetic approach. Some of them



established through a critical plane concept are derived from the mesoscopic approach proposed by Dang
Van. For instance, Papadopoulos has developed a mesoscopic theory of fatigue crack initiation taking into
account the mesoscopic plastic strain accumulated in all the crystallographic planes unfavourably oriented in
an elementary volume. By using the concept of the volume influencing fatigue crack initiation together with
this local approach this paper shows that the concept of volume influencing fatigue crack initiation can be
seen as a general concept. The predictions of the two volumetric criteria are finally compared with
experimental fatigue data.

ENERGY BASED HIGH CYCLE MULTIAXIAL FATIGUE CRITERION

All the existing criteria do not distinguish loading types because they consider only the tensor of stresses at
the critical point and do not take into account the distribution of stresses around this point. This distribution
at any moment of the loading cycle is the same in plane bending and in rotative bending. In rotative bending,
however, all the points lying on a circle centred on the middle of the specimen cross-section support the
same stress during a cycle ; in plane bending there is no axisymmetry, there are only two points supporting
the greatest stresses [1]. That is why it is important to reason on a complete loading cycle as proposed by
Tsybanev [9] and Froustey et al. [10].

As proposed by Froustey et al. [10], Palin-Luc and Lasserre [1] use the mean value on one cycle of the
volumetric density of the elastic strain energy, Wa, defined by (1) whatever the point M in the mechanical
part for a sinusoidal fully reversed loading. ( )σ ij M t,  and ( )ε ij

e M t,  are respectively the tensor of stresses

and the tensor of elastic strains at the considered point M function of time.
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Usually the endurance limit is low enough to consider that the material remains elastic at the macroscopic
scale [11]. Thus, Wa can be considered as the mean value on one cycle of the total strain energy density at
the considered point. The Wa distributions on the cross-section of a smooth specimen loaded in traction,
rotative bending and plane bending are very different such as shown in Figure 1. In order to take into
account these differences the authors reason upon a volume around each critical point Ci . A point is critical
with regard to fatigue if at this location Wa has a local maximum. From σ *  and by analogy with a fully
reversed sinusoidal traction load the corresponding mean value of the strain energy volumetric density, Wa*,
can be calculated by (2), where E is the Young modulus of the material.
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E

*
*= σ 2

4
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Around each critical point Ci , it is always possible to define the volume ( )V Ci*  by the set of points M

where ( )Wa M  is higher than ( )Wa Ci*  (see equation (3)). From ( )V Ci* , ( )ϖ a iC  is defined by (4). ( )ϖ a iC

is the volumetric mean value of the strain energy density around the critical point Ci .
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Figure 1: Wa distribution on the cross section of a smooth cylindrical specimen loading in tension, rotative

bending and plane bending.

Uniaxial Stress State
At the endurance limit and at the critical point C, this new quantity ( )ϖ a C  is supposed to be constant,

whatever the uniaxial stress state. If we note ( )ϖ a
D

Uniax  its value at the endurance limit for any uniaxial
stress state the volumetric energy based criterion can be written by inequality (5) where failure occurs if this
inequality is not verified.

( ) ( )ϖ ϖa C a
D

Uniax< (5)

Multiaxial Stress State
The influence of the triaxiality of stresses on the endurance limit has already been proven by several works.
Palin-Luc and Lasserre propose to take into account this influence by defining the degree of triaxiality, dTa,
as introduced by Froustey et al. [10]. They define dTa, for any fully reversed sinusoidal loadings, by
expression (7) where Wsa and Wda are respectively the spherical part and the deviatoric part of the strain
energy density (6). For any periodic loading it is easy to prove that Wa Wsa Wda= + .
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Based on many experimental data in high cycle fatigue, Froustey and Lasserre have proposed to relate the
value of Wa(Ci), whatever the loading and the stress state at the critical point, to the value of Wa in Torsion,
Wa(tors), by the function F (8) depending on the degree of triaxiality at the Ci point, dTa(Ci), and a new
material dependent parameter β.
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The β parameter is representative of the material triaxiality sensitivity. β is equal to zero for a XC18
annealed steel and is around 3 for a spheroidal graphite cast iron. The identification of the β parameter has
to be done by applying equation (8) with the endurance limits in rotative bending and in torsion.



In order to take into account the triaxiality influence the authors postulate that Wa* is stress state dependent
and verifies equation (9). Thus Wa* is defined whatever the loading, V* is also defined.

( )
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i
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,= β (9)

The influence of triaxiality has also to be taken into account in the definition of the limit value of ϖ a
D . By

analogy with the previous assumption, we postulate that for any loading and stress state at the endurance

limit the value of ϖ a
D , noted ( )ϖa

D
iC load, , verifies (10). This quantity is dependent on the stress state at Ci

and of the volumetric distribution of stresses inside V*. Then the criterion can be applied on any fully
reversed loading.
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Criterion Application
To apply this energy based proposal σ * , β, the Young modulus, E, and the Poisson ratio, ν, of the material
have to be known. Only three experimental endurance limits under fully reversed loadings are needed to
identify σ *  and β : in traction, σ Trac

D , in rotative bending, σ RotBend
D  and in torsion, τ To

D . These endurance
limits can be considered as material parameters if the radius of specimen is larger than about 5 mm [7].
From equation (8) in case of rotative bending, the β material parameter can be identified since σ RotBend

D  is
supposed known.

At the endurance limit, this proposal predicts that the terms of the tensor of stresses are solutions of equation
(10). In this equation ( )ϖ a

D C loadi ,  is defined by :

( ) ( ) ( ) ( )[ ]
( )

ϖa
D

i

i

i

V C

C load
V C

Wa x y z load Wa C dv
i

,
*

, , , *
*

    = −∫∫∫1
(11)

where   ( ) ( ){ }V C M x y z Wa M Wa Ci i* ( , , ) *( )= ≥points  such that 

and   
( )

( )Wa C load Wa Uniax
F dTa C

F dTa Uniaxi

i
*( ) *( )

( ),

( ),
, =

β
β

APPLICATION OF THE CONCEPT OF VOLUME INFLUENCING FATIGUE CRACK
INITIATION TO A MESOSCOPIC APPROACH

The aim of this part is to show that the concept of the volume influencing fatigue crack initiation proposed
by Palin-Luc et al. [1] is not restricted to an energy based approach. Indeed, other criteria can be modified so
as to consider the stress distribution around a critical point. Let us consider for example the fatigue criterion
developed by Papadopoulos these last years [3], [12], [13] and based upon a mesoscopic approach.

Endurance criterion expressed at critical locations
In this model, crystals of a metallic aggregate are assumed to follow a combined isotropic and kinematical
hardening rule when flowing plastically. It is long known that metal grains possess some preferred
orientations (slip systems) along which plastic strain can develop. A slip plane and a slip direction on this
plane constitutes each slip system. The author showed that the accumulated plastic strain along a slip
direction on a slip plane induced by an external cyclic load becomes nearly proportional to the macroscopic
resolved shear stress amplitude Ta, when the number of load cycles increases indefinitely:
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∞
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To avoid that the accumulated plastic strain exhausts the ductility of the crystal, a critical value can be
defined as a material parameter. The limitation of this mechanical quantity leads to a condition precluding
the creation of a micro-crack within an elementary material volume. Although a so defined fatigue criterion
could be of interest to investigate the fatigue strength of single crystals, it is of no use within the engineering
framework since in this context one has to prevent the creation of a fatigue crack of the same size as the
elementary volume.

This fatigue engineering criterion is then based on two average measures. The first one is related to the
plastic strain accumulated in all the flowing crystals within the elementary volume (13).
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The angle ψ varying from 0 to 2π covers all the gliding directions on a material plane whereas the angles ϕ
and θ varying from 0 to 2π and from 0 to π, respectively, cover all the possible orientations of the material
plane inside the elementary volume.
The second average measure is built according to the normal stresses acting on all the possible material
planes:
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It is worth mentioning that this volumetric mean is nothing else but the hydrostatic stress Σ H .

Finally, the multiaxial endurance criterion is defined as inequality (15) applied to a linear combination of
the average quantities proposed above.

b aT max,H
2
a ≤Σ+ (15)

Endurance criterion taking into account the stress distribution [14]
The criterion described in the previous section is unable to differentiate two different stress distributions as
far as the stress state at critical points remains unchanged (e.g. tension-compression and rotative bending).
To take into account all the  potential crack nucleation sites, it seems natural to build a criterion by
considering in a specimen all the points where a crack is likely to occur. According to the studied criterion, a

threshold condition (16) applied to the parameter 2aT  is enough to describe the crack initiation at critical

points.

max,H
2
a  p*qT Σ−≤ (16)

where q* and p are two material constants.
By introducing an equivalent stress given by (17):

max,H
2
aeq  pT Σ+=σ (17)

it is possible to define a volume V* around a critical point Ci as composed by the points verifying *qeq ≥σ
that is :

{ }*q,thatsoCaroundsintpoM*V eqi ≥σ= (18)

This threshold value q* is a material parameter and can be seen as the equivalent stress necessary to initiate



crack at critical locations.

To consider the stress distribution effect, it can be now proposed to carry out averages on the mechanical
parameters used in the criterion:

dVT
V

1

*V

2
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  and ( )dV 

V
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Finally the new criterion is written as inequality (19).
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2
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with { }*q,thatsoCaroundsintpoM*V eqi ≥σ=  and max,H
2
aeq  pT Σ+=σ

The crack initiation is then seen as the coalescence of many crack nuclei so that to form a crack of the same
size order than the elementary material volume.
The use of this criterion requires the identification of three material constants : p, q and q*. It can be done by
means of three fully reversed fatigue limits :
- tension-compression: s-1

- torsion : t-1
- rotative bending : f-1
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One main advantage of this new criterion is that for some stress distributions (e.g. combined rotative

bending and torsion), analytical expressions of the mechanical parameters dVT
V

1

*V

2
a* ∫∫∫ 


  and

( )dV 
V

1

*V

max,H* ∫∫∫ Σ can be achieved even for out-of-phase loadings. This criterion is also able to reflect the

different fatigue strengths of specimens submitted to rotative bending and plane bending.

COMPARISON PREDICTIONS / EXPERIMENTS

The predictions of the two previous calculation methods are compared with experimental data in multiaxial
fatigue on four materials : a 30NCD16 quenched and tempered steel [8], a XC18 annealed steel, a 35CD4
quenched and tempered steel and a spheroidal graphite cast iron close to the FGS800-2 (Afnor standard).
For an objective and easy comparison the Relative Error of Prediction, REP, is defined by (20).

REP
Experiments
D D

Experiments
D(%) =

−
×

σ σ
σ

Prediction
100

(20)

The Relative Error of Prediction, REP, is presented in Table 1. All the REP are between -10% and +10%.



This shows that the predictions of the proposals are in very good agreement with experimental data.

The good accuracy of these criteria proves that the concept of volume influencing fatigue crack initiation
can be used as a general concept with a global energetic approach or with a mesoscopic criterion based on a
critical plane approach. Of course other comparisons between predictions and experimental data have to be
done on notched specimens.

TABLE 1.
EXPERIMENTAL RESULTS AND RELATIVE ERROR OF PREDICTION, REP, OF THE CRITERIA. THE ITALIC VALUES

HAVE BEEN USED TO IDENTIFY THE MATERIAL PARAMETERS FOR EACH CRITERION (σ*, β and p, q, q*).

Material

and
parameters

Loadings σD

(MPa)

τD

(MPa)

σD/τD ϕ

(deg.)

Energy
REP

(%)

Papadop.
Modif.
REP
(%)

30NCD16 Traction 560 - - - -
σ*=441 MPa Rotative Bending 658 - - - -
β=0.96 Torsion - 428 - - -
p=0.219 Plane Bending 690 - - - -4.5 -4.6
q=364 MPa Plane Bending + Torsion 519 291 1.78 0 -8.1 -6
q*=292 MPa Plane Bending + Torsion 514 288 1.78 90 -9.1 -7

Rotative Bending + Torsion 337 328 1.03 - -8.3 -5.6
Rotative Bending + Torsion 482 234 2.06 - -9.3 -7.5

XC18 Traction 273 - - - -
σ*=230 MPa Rotative Bending 310 - - - -
β≈ 0 Torsion - 186 - - -
p=0.068 Plane Bending 332 - - - -6.3 0
q=164 MPa Plane Bending + Torsion 246 138 1.78 0 1.6 0.4
q*= 139 MPa Plane Bending + Torsion 246 138 1.78 45 1.6 0.4

Plane Bending + Torsion 264 148 1.78 90 8.3 7.2
35CD4 Traction 558 - - - -
σ*=534 MPa Rotative Bending 581 - - - -
β=1.33 Torsion - 384 - - -
p=0.251
q=369 MPa
q*= 353 MPa

Plane Bending 620 - - - 4.3 4.5

FGS 800-2 Traction 245 - - - -
σ*=204 MPa Rotative Bending 280 - - - -
β=3.09 Torsion - 220 - - -
p=0.625 Plane Bending 294 - - - -9.2 -2.7
q=193 MPa Plane Bending + Torsion 228 132 1.73 0 -7.2 -1.8
q*=162 MPa Plane Bending + Torsion 245 142 1.73 90 0.2 5.3

Plane Bending + Torsion 199 147 1.35 0 -10.2 -5

CONCLUSIONS

The predictions of a global volumetric energy based criterion and a mesoscopic criterion modified by using
the concept of volume influencing fatigue crack initiation V* proposed by Palin-Luc and Lasserre [1] are in
very good agreement with experimental fatigue data on smooth specimens made with four metallic
materials. Other comparisons between predictions and experiments have to be done especially on notched
specimens to confirm the general meaning of the V* concept. Such comparisons have already been done on



some experimental data for the energy based criterion, the results are also in very good agreement with
fatigue tests [2]. Furthermore, one can show that in combined bending and torsion, predictions of the two
volumetric proposals are closed to the Gough and Pollar ellipse quadrant [1], [14] and are phase
independent as proved by long life fatigue tests. Under biaxial tension their predictions are phase dependent
which is in agreement with experiments. These first generalisation of the volume influencing fatigue crack
initiation concept is very promissing to progress in fatigue strength prediction for components with a
complex geometry and a complex volumetric stress distribution.
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