
Numerical analyses of cracks in piezoelectric
composite structures under electromechanical

loading

Matthias Scherzer Meinhard Kuna

TU Bergakademie Freiberg, Institut für Mechanik und Maschinenelemente

Lampadiusstraße 4, D-09596 Freiberg, Germany

Abstract

The present work is directed to the analysis of interface corner and crack configurations which
occur in smart materials. It delivers a new technique for solving the corresponding piezoelectric
boundary value problems by asymptotic eigenfunction expansions in connection with the conven-
tional finite element method. This approach represents the extension to coupled electromechanical
material behaviour of a method which was introduced in former times for geometrical and physical
linear and non-linear solid mechanics [6].

Piezoelectric, ferroelectric and dielectric ceramics or polymers are widely applied in Micro Electro
Mechanical Systems (MEMS) to supply the essential sensing and/or actuating functionality [3, 5]. As
a consequence of their integration into MEMS, these smart materials may be exposed to extraordinary
high mechanical and/or electrical static, dynamic or cyclic loading. Therefore, problems of fracture
and fatigue play an important role for the optimum design and reliable service performance of MEMS.
Fracture mechanics analyses and safety concepts have to be applied to crack-like defects in piezoelectric
bulk materials or in interface structures.

1 Linear Piezoelectricity and asymptotic analysis

First theoretical studies [2, 4] about the asymptotic behaviour at interface crack tips in piezoelectrics
show that difficult singular oscillatory solutions can occur. To take into consideration this complicated
feature in real boundary value problems and to develop associated stable numerical methods for its
handling, it is necessary to dispose of the complete eigenfunction expansions at interface and corner
crack tips. Generating these expansions we will at first discuss the used basic relations of piezoelectricity.
It is clear that the starting point can include only the simplest approach for both material domains of
the interface configuration. The main assumptions are mentioned in the following points:

1. Neglegting of magnetic and time rate effects

2. Introducing the thermomechanical-electric coupling by the electric energy term in the first law of
theromodynamics

3. Linearization on the electric hysteresis loop

4. Transversal isotropic piezoelectric behaviour

The governing relations describing this linear piezoelectricity represent the equations of stress equilib-
rium, the compatibility equations and Gauss’ law of electrostatics

σij,i = 0, Sij = 1
2
(ui,j + uj,i), Di,i = 0, (i,j=1,2,3) (1)
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Figure 1: Interface corner configuration
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as well as the material equations of the electromechanical interaction:

σ11 = c11S11 + c12S22 + c13S33 − e31E3, σ21 = (c11 − c12)S21

σ22 = c12S11 + c11S22 + c13S33 − e31E3, σ13 = 2c44S13 − e15E1

σ33 = c13S11 + c13S22 + c33S33 − e33E3, σ32 = 2c44S32 − e15E2

D1 = 2e15S13 + κ11E1, D2 = 2e15S32 + κ11E2

D3 = e31S11 + e31S22 + e33S33 + κ33E3. (2)

In (1) and (2) σij, Sij, ui, Ei and Di denote the stress and deformation tensor, the components of
the displacement vector, the negativ gradient of the electrical potential φ and the dielectric displace-
ments, respectively. The material parameters cij (mechanical), eij (piezoelectric) and κij (dielectric)
characterize transversly isotropic piezoelectrics with pooling-axis along the third direction of the chosen
material co-ordinate system in (2). These material equations are written with regard to the material
axes of each material corner domain as shown in Fig. 1 (x1–x3, x̃1–x̃3). The axes x2 and x̃2 are directed
perpendicular to the plane of Fig. 1.

Further simplifications lead to two-dimensional statements with the assumptions of plane strain:

S22 = S32 = S12 = E2 = 0 (x2 − direction normal to the plane strains) (3)

and reduce the system (1) and (2) to
S11

S33

S13

 =

 a11 a13 0
a13 a33 0
0 0 d33

2



σ11

σ33

σ13

+

 0 b13

0 b33
b31

2
0

{ D1

D3

}
(4)

{
E1

E3

}
= −

(
0 0 b31

b13 b33 0

)
σ11

σ33

σ13

+

(
δ11 0
0 δ33

){
D1

D3

}
(5)

∂σ11

∂x1
+
∂σ13

∂x3
= 0,

∂σ13

∂x1
+
∂σ33

∂x3
= 0,

∂D1

∂x1
+
∂D3

∂x3
= 0 (6)

∂2S11

∂x2
3

+
∂2S33

∂x2
1

= 2
∂2S13

∂x1∂x3
,
∂E1

∂x3
−
∂E3

∂x1
= 0, (7)

whereby the coefficients a11, ..., b13, ..., δ11 and δ33 (b13 6= b31) can be determined from the material
parameters introduced above.
In the material co-ordinate systems the solution can be searched in form of the potentials U(x1, x3) and
χ(x1, x3) [7]:

σ11 = U(x1, x3),33, σ33 = U(x1, x3),11, σ13 = −U(x1, x3),13

D1 = χ(x1, x3),3, D3 = −χ(x1, x3),1. (8)



Finally U(x1, x3) ends up in a linear partial differential equation of sixth order. The general solution
of this equation and therewith also the solution of the whole problem - because χ(x1, x3) follow from
U(x1, x3) by integration - has the form

U(x1, x3) =
∑
k

6∑
i=1

di(λk)(x1 + τix3)
λk . (9)

The complex variables di(λk) are free coefficients to be determined from the overall solution and τi stand
for the roots of the characteristic polynom (sixth order with real coefficients) of the partial differential
equation. The numbers λj which are in general complex ones represent the roots of the the solvability
condition of the interface corner configuration together with the associated boundary and transmission
conditions.
For each complex root τi there exists the corresponding conjugate complex root. Because U(x1, x3) is
a real function, for the pair of τi and τi in (9) occur terms of the form

eip
λk cos [λk(κ+ π

2
)] + fip

λk sin [λk(κ+ π
2
)]

with p =
√

(x1)2 + 2τ ri x1x3 + (x3)2[(τ ii )
2 + (τ ri )

2], κ = arctan
x1+τri x3

τ iix3

τi = τ ri +
√
−1τ ii , di(λk) = ei(λk) +

√
−1fi(λk). (10)

The solution representation above is valid for each material domain of the interface configuration which
has its own material parameters, axes, τi and di(λk) . The construction of the associated eigenfunction
expansion results in the following steps:

1. Transformation of the solutions (9) into the same polar co-ordinate system (ξ, θ) for both material
regions (0 ≤ θ ≤ β and 0 ≥ θ ≥ −α) of the interface corner configuration

2. Establishing the transcendental solvability condition according to the boundary and transmission
conditions

⇒ Det(λ, ...) = 0 (11)

The boundary and transmission conditions have the usual form:
- Vanishing normal and tangent stresses (σθθ, σξθ) and vanishing normal dielectric displacements
(Dθ) at θ = β, θ = −α
- Continuity of normal and tangent stresses, both displacement components (uξ, uθ), electric po-
tential (φ, E1 = − ∂φ

∂x1
, E3 = − ∂φ

∂x3
) and normal dielectric displacements at θ = 0

Modifications of these boundary conditions are not essential for the application of the following
solution technique. The only requirements are that they must result from physical reasons and
have to give correct formulated problems.

3. Numerical determination of λ: ⇒ λk, k = 1, ...,∞ in (11)

4. For complex roots λk = νk + iµk the conjugate complex root λk = νk − iµk exists:
⇒ terms of the quality ξνk cos(µkln(ξ)), ξνk sin(µkln(ξ)) occur

5. Determination of the associated eigenvectors and eigenfunctions (and removing of the energetic
”useless” functions) to get the expansions

U(ξ, θ) =
∞∑
k=1

Ckξ
λkf

(U)
k (θ, λk), σξξ(ξ, θ) =

∞∑
k=1

Ckξ
λkf

(σ)
kξξ(θ, λk), ... (12)

with the unknown coefficients Ck
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Figure 2: Neighbourhood of an interface corner together with the finite element nodes

2 Replacement of the near tip solutions by asymptotic stiff-

ness matrices

For solving whole boundary value problems of structural elements having interface corner configurations
the sole knowledge of the eigenfunctions introduced above is insufficient. The asymptotic eigenfunction
expansion in the neighbourhood of the interface corner tip must be connected to the solution of the solid
surrounding the interface corner. Doing this at a distance of ξ = ξ0 from the corner finite element nodes
of a regular net are established together with the degrees of freedom ui(ξ0, θj) for the displacements and
the electric potential φ (see Fig. 2).

The main idea of the presented approach at interface corners (which was developed in [6] for pure
mechanical behaviour) consists in a replacement of the corner neighbourhood (ξ < ξ0) effect to the
surrounding body (ξ > ξ0) by introducing of a special stiffness matrix at ξ = ξ0 which can be assembled
in a conventional way together with the other element stiffness matrices to the global stiffness matrix.
For ξ < ξ0 the following relations are valid:

σ =
∑
k

Ckf
(σ)
k (ξ, θ), σ = {σξξ, σξθ, Dξ}

u =
∑
k

Ckf
(u)
k (ξ, θ), u = {uξ, uθ, φ}. (13)

In (13) the marks f
(u)
k (ξ, θ) = {f (u)

kξ (ξ, θ), f
(u)
kθ (ξ, θ), f

(φ)
k (ξ, θ)} and f

(σ)
k (ξ, θ) = {f (σ)

kξξ(ξ, θ), f
(σ)
kξθ(ξ, θ), f

(D)
kξ (ξ, θ)}

denote the corresponding vectors of the displacement and stress eigenfunctions whose concrete forms
follow from the eigenfunction expansion above. The constants Ck can be related to the degrees of
freedom ui(ξ0, θj) (u1(ξ0, θj) = uξ(ξ0, θj), u2(ξ0, θj) = uθ(ξ0, θj), u3(ξ0, θj) = φ(ξ0, θj)) by

uξ(ξ0, θj) =
∑
k

Ckf
(u)
kξ (ξ0, θj),

uθ(ξ0, θj) =
∑
k

Ckf
(u)
kθ (ξ0, θj),

φ(ξ0, θj) =
∑
k

Ckf
(φ)
k (ξ0, θj), (j = 1, 2, 3, ...) (14)

and solving (14) one gets

Ck =
∑
j

bkj(ξ0, θ1, ...)vj(ξ0), θ1 = −α, ...θN = β,

v1(ξ0) = uξ(ξ0, θ1), v2(ξ0) = uθ(ξ0, θ1), v3(ξ0) = φ(ξ0, θ1),

v4(ξ0) = uξ(ξ0, θ2), v5(ξ0) = uθ(ξ0, θ2), v6(ξ0) = φ(ξ0, θ2),

v7(ξ0) = uξ(ξ0, θ3), ... (15)

To obtain the stiffness matrix it is necessary to calculate the virtual work δA of the stresses σ at
the virtual displacements δu on the circle ξ = ξ0:

δA = ξ0

β∫
−α

σ • δu dθ =
∑
j,l

qjlvj(ξ0)δvl(ξ0),



qjl = ξ0

∑
i,k

bijbkl

∫
−α

f (σ)
i (ξ0, θ) • f (u)

k (ξ0, θ) dθ (16)

The symbol ”•” marks scalar products of the corresponding vectors. The jl (j-th column, l-th row)
element of the wanted stiffness matrix is determined in (16) as the factor of vj(ξ0)δvl(ξ0) i.e. qjl.
Computations of these stiffnesses by (16) requires to use n eigenfunctions if n degrees of freedom exist
at ξ = ξ0. Avoiding this non-effective procedure it is possible and necessary to orthogonalize the
eigenfunctions.

3 Orthogonalization of eigenfunctions

The orthogonalization procedure is analogous to the technique given in [6]. Therefore, here the fi-
nal formulas will be presented only. After orthogonalization the virtual work δA, the stresses und
displacements at ξ = ξ0 result in:

u(ξ, θ)|ξ=ξ0 =
√
ξ0

∑
k

Ckf
(u)
k (θ), σ(ξ, θ)|ξ=ξ0 = 1√

ξ0

∑
k

Ckf
(σ)
k (θ), (17)

δA = ξ0

∑
k

±CkδCk, Ck = ±

β∫
−α

f (σ)
k (θ) • u(ξ0,θ)√

ξ0
dθ. (18)

The vector functions f
(σ)
k (θ) and f

(u)
j (θ) fulfil the condition

β∫
−α

f (σ)
k (θ) • f (u)

j (θ) dθ = ±δkj. (19)

Note that the coefficients Ck depend on ξ0 (Ck = Ck(ξ0)) while Ck are constants. The sign in (18) and
(19) depends on the integrals over the basic eigenfunctions in (12). The negative signs which can occur
in (18) and (19) imply the non-positive definiteness of piezoelectric problems. The relations (18) allow
an excellent determination of the wanted stiffness matrix in δA after a possible choice of the θ− finite
element approximation for the displacements u(ξ0, θ) :

u(ξ0, θ) =
∑
j

Nj(θ)vj(ξ0),

with Nj(θ) as the one-dimensional vector shape functions at the circle ξ = ξ0. Then δA gets the
representation:

δA =
∑
j,l,k

±q̂kj q̂klvj(ξ0)δ(vl(ξ0)), q̂kj =

β∫
−α

(
f

(σ)
k (θ) •Nj(θ)

)
dθ. (20)

Thus the wanted stiffness elements qjl can be calculated by:

qjl =
∑
k

±q̂kjq̂kl. (21)

The interesting feature of qjl is their independence of ξ0 which repeat the findings of the pure mechanical
case [6].

The complete stiffness matrix of the whole solid can be assembled by the help of usual finite ele-
ments and qjl taking into consideration the special asymptotic behaviour at interface corner tips. After
determination of the FEM-solution u is known for whole solid and at ξ = ξ0. The coefficients Ck follow
from (18). The calculation of the constants Ck is possible by means of (13) and (18) with:

u(ξ, θ) =
∑
k

Ckf
(u)
k (ξ, θ). (22)



In such a way for the roots of the solvability condition of the form λ1 ν1, λ2 ν2, λ3 ν3 + ıµ3, (ı√
−1), λ4 = ν3 − µ3ı, ...., ν1 < ν2 < ν3... the following system of equations is valid:

C1 = ξ
ν1+

1
2

0 K11C1 + ξ
ν2+

1
2

0 K12C2 + ξ
ν3+

1
2

0 (K13C3 +K14C4) + ....

C2 = ξ
ν2+

1
2

0 K22C2 + ξ
ν3+

1
2

0 (K23C3 +K24C4) + ....

C3 = ξ
ν3+

1
2

0 (K33C3 +K34C4) + ....

C4 = ξ
ν3+

1
2

0 K44C4 + ....

: = : (23)

In (23) the quantities Kij = Kij(gkl) in general depend on the integrals gkl over the scalar product of

the functions g(σ)
k (θ) and g(u)

l (θ) which are the θ-dependent parts of the initial eigenfunctions f (u)
k (ξ, θ)

and f (σ)
l (ξ, θ) by:

gkl =

β∫
−α

g
(σ)
k (θ) • g

(u)
l (θ)dθ.

The fact that K21 = K31 = K32 = K41 = ... = 0 is a consequence of the orthogonalized eigenfunction
system construction. This way the solution for the whole solid and the corner region is determind.

On the other hand it is interesting to note the ξ0-dependence of the solution which follows from (17)
and (23):

u(ξ0, θ) = ξ0

∑
k

Dkξ
νk
0 (1 + dkk+1ξ

(νk+1−νk)
0 + ...)f

(u)
k (θ)

σ(ξ0, θ) =
∑
k

Dkξ
νk
0 (1 + dkk+1ξ

(νk+1−νk)
0 + ...)f (σ)

k (θ)

Dk = KkkCk, dki = KkiCi
Dk

In this parameter dependence we have no oscillation effects even if the solvability condition (11) produces
complex roots and the ”strong” solution includes the trigonometric-logarithmic terms mentioned above.
Therefore, the proposed numerical aqpproach has two advantages:

1. the asymptotic stiffness matrix does not depend on ξ0 (invariance)

2. the oscillating terms are circumvented numerically but still contained fully

This makes it possible to ”live” with the oscillatory asymptotic solution of the interface crack tip
also. Since the coefficients of the eigenfunctions completely describe the electromechanical fields in the
interface corner region they can be handled as fracture parameters and used to formulate failure criteria.

4 First test example

The procedure of asymptotic stiffness matrix calculations was realized by the help of modern computer
algebra systems and implemented together with the commercial finite element code ABAQUS [1].

Results of test computations will be explained. An interface crack specimen (Fig. 3) of two different
piezoelectric materials (100*200 dimensionless extension, crack in the middle of the specimen with a
length of 50, plane strain (3) conditions) is strained homogenously at the upper specimen end and
clamped right opposite. The electric potential is given at the right specimen side (x1 = 50, −100 ≤
x3 ≤ 100) with zero values.
For this specimen the following material parameters are introduced:
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Figure 3: Piezoelectric specimen under tension

Upper half (PZT-4):

c11 = 1.39∗1011 N
m2 , c33 = 1.13∗1011 N

m2 , c12 = 7.78∗1010 N
m2 , c13 = 7.43∗1010 N

m2 , c44 = 2.56∗1010 N
m2

κ11 = 6.0 ∗ 10−9 C
Vm

, κ33 = 5.470 ∗ 10−9 C
V m

, e15 = 13.44 C
m2 , e31 = −6.98 C

m2 , e33 = 13.84 C
m2

Lower half (hypothetical):

c11 = 2.39∗1011 N
m2 , c33 = 1.13∗1010 N

m2 , c12 = 4.78∗1010 N
m2 , c13 = 5.43∗1010 N

m2 , c44 = 2.56∗1010 N
m2

κ11 = 4.0 ∗ 10−9 C
Vm

, κ33 = 2.470 ∗ 10−9 C
V m

, e15 = 12.0 C
m2 , e31 = −4.98 C

m2 , e33 = 14.0 C
m2

From these material parameters which have the same pooling directions (x3) in both material domains
and for the homogenous boundary and transmission conditions given above the roots λk of the solvability
condition (11) result in:

1. −0.5±
√
−1 ∗ 0.117327, 0.5±

√
−1 ∗ 0.117327, 1.5±

√
−1 ∗ 0.117327, ...

2. −0.5, 0.5, 1.5, 2.5, ...

3. 0.0, 1.0, 2.0, 3.0, ...

Each pair of the conjugate complex roots (1.) produces two linear independent eigenvectors from the
free constants di(λk) while the second part of the roots (2.) have single eigenvectors and the third
part (3.) generates three linear independent eigenvectors for each concrete value. In Fig. 4 the stress
components σ33 and σ13 together with the electric field E3 are represented according to a zoom radius
ξz = 1.0. The solutions of usual finite element computations (”without asymptotics”) are compared
with solutions following from the technique introduced above (”with asymptotics”, ξ0 = 0.01). The
crack tip lies in the centre and the interface on the horizontal straight line (x1-axis) on the right side
as prolongation of the crack. The results repeat the fact of pure mechanical calculations [6] that in
general the usual finite element method cannot give the correct solution at interface crack tips. The
pure finite element representation of σ33 is analogous to the asymptotic behaviour at a crack tip inside
homogenous isotropic material and cannot ”feel” interface tip effects. On the other hand the stress
component σ13 of this same solution (”without asymptotics”) fulfil the given boundary conditions on
the crack surfaces in a very bad manner only. The differences between the solutions with and without
asymptotics can also be seen on the representations of the electric variables i.e. the electric potential
gradient, whereby the solution symmetry according to the x3-axis is not found in the pure finite element
solution. Further detailed and sensitive computations should answer the question for which materials
and for which interface corner configurations the usual finite element method is usable and for which
not.
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Figure 4: Piezoelectric solutions at an interface crack tip under tension
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e.V.

[6] M. Scherzer: Physikalisch und geometrisch nichtlineare Problemstellungen der Festkörper-
und Bruchmechanik an Interface-Konfigurationen. Habilitationsschrift, Technische Universität
Bergakademie Freiberg 1999.

[7] H. Sosa: Plane problems in piezoelectric media with defects. International Journal of Solids and
Structures 28(4), pp. 491–505, 1991.


