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ABSTRACT 

The fract,ure resistance of steel plates used to build pipelines is commonly characterized by measuring 
macroscopic rupture parameters such as the energy dissipation rate, the thickness reduct,ion or the 
crack opening angle. In this study, the local approach to fracture is used to modcl tests cnrricd out on 
wide plates and to predict global parameters. 

The proposed model is based on an extension of the Gurson model including plastic anisotropy 
and viscosity. The mechanical behavior of the material is characterized using tensile bars tested along 
different directions. Rupture is characterized using notched bars. The inclusion content is measured 
using metallography. 

The model is used to numerically investigate the effect of plate thickness, through thickness hardness 
gradients and plastic anisotropy on the fracture resistance. 

INTRODUCTION 

In order to maintain structural integrity of components such as large-diameter pipelines and to prevent 
fracture by unstable longitudinal dynamic propagation of cracks, a minimum toughness lcvcl is rcquired 
for pipeline steels. It is usually assessed from the Charpy-V fracture toughness tests, Drop Weight 
Tear Tests or full-scale burst tests [l] .  On the other hand, attempts have been made to calculate 
crack propagation and crack arrest in pipeline by the numerical computation of pipcline burst and 
decompression [2]. 

In these numerical studies, the problem of the material fracture criteria remains a kcy issuc. Global 
parameters such as a critical Crack Tip Opening Angle (CTOA), or a critical dissipated energy proved 
to be dependent, of the specimen and loading configuration. Similar difficulties are cncountered in the 
more general framework of the so-called “global approach to fracture”. Global parameters such as the 
J-integral or the more recently introduced constraint factor Q [3] are unable to capture experimentally 
observed geometry effects. On the other hand, the “local approach to fracture” is thought to be able to 
deal with those problems as it is based on a micromechanical description of the mechanisms involved 
in the fracturc process [4]. 



The aim of this paper is to demonstrate the ability of fully-coupled local approach of ductile fracture 
to simulate crack propagation over long distances. For this purpose, a rolled ferrito-pearlitic steel was 
investigated using static and dynamic ductile tearing experiments. Tests were carried out on wide 
plates allowing for crack advances over 200 mm. The mechanical and damage behavior of the rnaterial 
was characterized using tensile specimens and notched bars. 

The constitutive equations describing the material are based on the Gurson model [5] which has 
been extended to account for plastic anisotropy and viscous effects. Finite Element sinlulations are 
used tjo simulate ductile tearing tests. Simulations are restricted to static in plane propagation. Shear 
bands arc observed during dynamic tests. The influence of computational parameters such as mesh 
sizc, elemcnt shape are also studied in order to check the validity of the sinlulations. Thc model is 
applied to simulate crack propagation over long distances (i.e. > 100 mm). The Inotlcl is used to 
predict fract,ure global parameters such as the energy dissipation rate, R, proposed by Klcrnm [ G ]  and 
Turner [7], the thickness reduction ratio at fracture, 2 and the CTOA. In particular, the cffcct of the 
sheet thickness or1 R and 2 is investigated. 

CONSTITUTIVE EQUATIONS ~ ANISOTROPIC GURSON MODEL 

In order to represent the plastic and damage behavior of the investigated steel, an extension of the 
Gurson-Tvcrgaard-Needleman (GTN) model including plastic anisotropy and visco-plastic effects is 
proposed. An effective scalar stress oh is implicitly defined by the following equation: 

of1 is the Hill equivalent stress and om the mean stress. q1 and 42 are constant parameters introduced 
on a phenomenological basis so that the model closely corresponds to unit cell calculations. f *  is an 
effective porosity. It is a function of the actual porosity f which has been introduced by Tvergaard and 
Needleman (GTN modcl) to represent void coalescence leading to final fracture. It is assumed that 
coalescence starts a t  a critical porosity f c .  For actual porosities f larger than f c ,  thc mechanical 
softening duc to void growth is larger than what is predicted by the original Gurson rnodel. Based on 
these assumptions, the simplest phenomenological form for f *  is expressed as : 

where S > 1 is a coefficient representing the increased damaging effect of porosity. Both fc and 6 have 
to be adjusted. Failure occurs when f *  = l / q l .  The flow potential @ is then defined as: 

where R is the yield stress of the undamaged material depending on the matrix curnulated plastic strain 
p .  In the case of plastic flow, the yield condition is expressed as @ = 0. The present formulation is 
then equivalent to the standard formulation of the Gurson model in which equation 1 is considered as 
the yield condition. In the case of viscoplasticity, flow occurs for Q, 2 0. The diff'ercnce o* - R is then 
considered as an effective creep stress. 

In order to account for the plastic anisotropy of the material, the von Mises equivalent stress oe 
(used in the standard GTN model) has been replaced by the Hill equivalent stress 011 in equation 1 : 
of1 is defined as: 

where N S is the stress deviator and H the Hill anisotropy fourth order tensor. When writing O H  in 
the anisotropy principal axes, which, in the case of the study, correspond to S = Short Transverse 
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Figure 1: Wide plate specimen. Shaded areas represent welded reinforcements used to prevent plastic 
collapse in the loading region 

(thickness), T = Transverse (perpendicular to rolling direction) and L = Long (parallel to rolling 
direction) directions, O H  has the following expression: 

This modification of the Gurson model is purely phenomenological. It only affects the contribution 
of deviatoric stresses on the potential definition. The role of pressure (a,) in the modified potential 
remains the same as in the original Gurson model. Damage is still assumed to be isotropic. 

MATERIAL TESTING ~ MATERIAL PARAMETERS 

The material of this study is a X70 ferritic pearlitic steel. It belongs to the HSLA (High Strain Low 
Alloyed) steel family, micro-alloyed with niobium and vanadium. Investigation of the inclusions by 
image analysis of polished surfaces as well as X-ray analysis revealed a very low inclusion volume 
fraction (about 1.5 . lop4)  which is related to the very low sulphur and phosphorus content. The 
inclusion population is characterized by small, globular particles of low mean diameter (about 1 pm), 
composed of two phases combining calcium sulfide Cas and aluminum or magnesium oxides [8]. 

The mechanical behavior was investigated using standard test samples including smooth and 
notched round tensile bars. Crack propagation over long distances was studied using wide plates 
(685mmx 250rrlm) with a lateral saw-machined notch. These plates were tested using a 2500 kN 
tensile machine under quasi-static conditions (ram speed 0.1 mm.s-l). Under these conditions, fracture 
surfaces are flat and perpendicular to the loading direction. Note that under dynamic conditions, shear 
fracture is observed. A schematic drawing of the specimen is shown on figure 1. 

Materials parameters (gathered in table 1) can be divided in two different set,s: (i)  parameters 
relative to the (visco)-plastic behavior, (i i)  parameters relative to damage and rupture behavior. Due 
to the very low inclusion volume fraction, damage has very little effect on the overall plastic behavior 
until the plastic strain reaches z 20%. It was therefore possible to independently determine the 
first set of parameters using tensile specimens along 6 directions of the plate including three out-of- 
plane directions (L, T, S, LT, TS, SL). The hardening behavior is described using a simple power law 
relationship: 



TABLE 1 
MODEL PARAMETERS 

Elasticity Young's modulus: 210 GPa, Poisson's ratio: 0.3 
Plastic hardening K = 795 MPa, n = 0.13, €0 = 0.002 
Viscoplasticity I S  = 55 MPa.s'/"', n' = 5 
Hill criterion h,, = 1.185, h,, = 0.823, h,, = 1.552, 

GTN f o  = 1.5 10-4, f c  = 7.4 10-4, S = 3.8 
Element, thickness hT = 1 mm 

h,  1.586, h,, 1.896, h,, = 0.801 

The viscoplastic behavior was characterized using a Norton law: 

In particular, it can be noted that h,, is much larger than h,, and h,,.,. This indicates that,  in a tensile 
test along the L (resp. T) direction, the investigated material deforms more along the S direction than 
along thc T (resp. L) direction, as observed experimentally. 

The initial void volume fraction f0 was taken as being the inclusion (CaS+oxides) volume 
fraction [8]. It  was thus assumed that immediate debonding between the matrix and the inclusions takes 
place. Damage parameters of the Gurson-type model ( f c  and 6) have to be determined by comparing 
experiments with FE  simulations. For this purpose, axisymmetric notched bars were used. The 
minimum diarneter, $0, and the outer diameter, $,were equal to 10 mm and 18 mm, respectively, while 
the notch radius was taken equal to 4 and 2 mm Reducing the notch radius increases the stress triaxiality 
ratio in the minimum section and leads to lower strains to failure. To perform the identification of f c  
and 6, experimental normalized forces F / S ,  ( F :  force, So: initial minimum cross section) and radial 
displacement along the L direction A$L were compared with Finite Element (FE) simulations. Note 
that due to strong anisotropic behavior of the material, three-dimensional calculations arc rcquired. 
f c  and S were adjusted to reproduce the sharp drop of the load which corresponds to the initiation of 
a central crack in the specimens. 

In order to model crack propagation, it is necessary to adjust a characteristic length. In practice, 
this length is defined by sclecting a proper mesh size [g]. Test calculations have shown that the element 
size in the direction perpendicular to the crack plane, has the greatest influence. In the present case, 
cracks propagate along the L-direction in the L-S plane. The corresponding length is thc clement 
size along the transverse direction h,. It was adjusted in order to represent the cxperirnental energy 
dissipation rate R. 

NUMERICAL PROCEDURES 

The modified GTN model was implemented in the FE software Zkbulon, developed a t  Ecole des Mines 
de Paris [lo]. An implicit scheme is used to integrate the constitutive equations. The consistent 
tangent matrix is computed using the method proposed in [ll]. As the material is anisotropic, the 
simplified method proposed by Aravas [l21 cannot be used. The material is considered as broken when 
f *  reaches l / y l  - E with E = lop3.  In that case, the behavior is replaced by an elastic behavior with a 
very low stiffness (Young's modulus: Eh = 1 MPa). Calculations were done using quadratic elements 
with reduced intcgration. Plane stress (PS), plane strain (PE) and 3D elements were used. 111 regions 
where the crack propagates, 8 nodes (PS and PE) and 20 nodes (3D) elements wcrc used. A n  updated 
Lagrangian formulation was used in which Jauman stress rates are used. 

An example of the FE meshes used to simulate ductile tearing of wide plates is shown on figure 2. 
The initial thickness of the plate is referred to as Bo. Due to the symrnetries of the problem, one 
fourth of the specimen is meshed. In some cases, combined 2D/3D meshes wcre used. This technique 
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Figure 2: Meshes used for the FE simulations 

reduces the number of degrees of freedom. The 2D part (plane stress) is used to load the specimen 
while the crack propagates in the 3D part. The number of elements used to mesh the thickncss was 
varied between 1 and 6 i n  order to study the role of mesh refinement on the results. 

RESULTS 

Tests conducted on wide plate specimens were used to determine two macroscopic fracture parameters: 
(1) the energy dissipation rate R, (2) the thickness reduction ratio 2. They are defined as: 

where Bo (resp. BR) is the initial plate thickness (the plate thickness a t  rupture), a the crack length 
and U the dissipated energy. Tests have shown that both R and 2 have almost constant values for 
crack advances between 50 and 140 mm. 

Numerical simulation was used compute both R and 2. Three effects have been studied: (i)  effect 
of the plate thickness, (ii) effect of a hardness gradient, (iii) effect of plastic anisotropy. 

Mesh size sensitivity 

The element thickness in the loading direction (T) was fixed to  represent the experimental values of R. 
However element sizes in both other directions can also influence the numerical results. The maximum 
number of elenlents used to mesh the thickness is 6. The problem has then about 30000 degrees of 
freedom. The following conclusion can be drawn from the numerical investigations: 

0 2: 6 elernents in the thickness are required to obtained a good description of rlccltirlg for a 
thickness equal to  20 mm. For Bo < 10 mm results tend to be less sensitive as plane stress conditions 
prevail (e.g. for Bo = 10 mm the same results are obtained for 2 and 3 elements). For large values 
of Bo, plane strain conditions dominate so that the results also become independent on the thickness 
discretization. 

0 R: Calculated valucs of R are much less sensitive to the thickness discretization. Large scale 
yielding is always observed so that the energy dissipated in the elements undergoing rupture (and 
consequently the highest thickness reduction) remains small compared to the total energy. 

0 h, Values of 2.5 and 5.0 mm were used for the element size in the propagation direction (hL). No 
significant differences were found. 
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Figure 3: Effctct of the initial plate thickness Bo on the energy dissipation rate (a) and thc thickness 
reduction 2 (b).  Open symbols: simulations, closed symbols: experiments for two steels (A)  and (B). 

The elements used in this work remain however large in comparison with other studies [13,14]. 
However considering the total simulated crack advance, the same number of elernents/degrees of 
frccdom are used to describe propagation. Based on the previous remarks, it appears that the present 
FE discretization is suitable to model the main experimental features and trends observed during 
propagation. It is clearly not fine enough to closely represent initiation. 

Thickness effect 
Figure 3 shows the variations of R and 2 as a function of the initial thickness. For some thicknesses, 
several simulations were performed using different element size. FE  simulations correctly represent 
the fact that R reaches a maximum (for Bo M 20 mm) and are in reasonable agreement with the 
experiments. The evolution of R as a function of Bo can be explained as follows. As thickness increases, 
the deformation condition along the thickness direction progressively changes from plane stress to plane 
strain. This results in an increase of the stress triaxiality ratio which has two antagonist effects: (i) 
higher stresses are generated in the loading direction leading to a higher dissipated energy : (ii) the 
void growth rate f is increased so that the critical porosity fc is reached sooner. This results first in 
an increasing value of R (due to higher stresses) followed by a decrease (due to the accelerated void 
growth). On the other hand, 2 is a continuously decreasing function of the thickness. 

Through-thickness hardness gradient 
Rolled plates can have a softer or harder outer surface [8]. In order to numerically investigate the effect 
of such a hardness gradient, calculations were performed under the following assumptions. The plate 
(thickness: 10 and 20 mm) is divided in bulk and a skin regions having the same volume. Bulk and skin 
are assumed to be either softer or harder ( f30%) so that the average stress-strain curve (given by the 
law of mixture) in the loading direction remains constant. Three situations are t,herefore envisaged: 
(i) soft skin, hard bulk, (ii) hard skin, soft bulk, (iii) homogeneous material. All other properties are 
supposed to  remain constant. It is shown on figure 4 that the higher R is obtained in the case where 
the plate has a hard skin ; the lowest value is obtained in the case of the soft skin. The opposite 
trend is observed for the thickness reduction 2. FE analysis shows that a hard skin prornotes a more 
homogeneous stress state along the thickness direction together with a lower stress triaxiality in the 
middle of the plate. In this case, the crack front tends to be flatter as shown on figure 5. 
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Figure 4: Effect of through-thickness hardness gradients on the energy dissipation rate ( R ) .  

Figure 5: Crack front (gray) for different hardness profiles. 

Plastic anisotropy 

Experiments carried out on plates (thickness: 25.4 mm) under quasi-static condit,ions have shown that 
the crack growth resistance depends on the loading direction [8]. Tests in the T-L orientation (i.e. 
T: loading direction, L: crack growth direction) give an average value of R equal to 4.05 J/mrn2 and 
an average value of 2 equal to 52%. Tests in the L-T orientation (i.e. L: loading direction, T: crack 
growth direction) give the following values: R = 4.45 J/mm2, 2 = 64%. This indicates that the 
T-L orientation is less resistant than the L-T orientation. In order to interpret these results, FE 
simulations were carried out in the T-L and L-T orientations. A fictitious isotropic material was 
also adopted. In these additional 3D calculations, it was assumed that the values of fo, fc and 6 were 
the same as those used previously. The plate thickness is equal to  25.4 mm using 2 elements along the 
thickness. Results are the following: 

T-L L-T Isotropic 
z (%) 34 44 21 
R (J/mm2) 3.9 5.1 2.2 



As for the cxperiments, the plate is tougher when tested in the L-T orientation than in the T-L 
orientation: bot,h R and 2 are increasing. The isotropic material exhibits a st,rongly reduction of 
resistance. This is correlated with a sharper neck (although 2 is smaller) which illcreases t,he stress 
triaxiality ratio in the center of' the plate. Similar geometrical effects are observed when comparing 
L-T and T--L orientations. Ductile tearing anisotropy may indeed be caused by purcly metallurgical 
parameters such as inclusion anisotropic shape, or anisotropic inclusion distribution. However, the 
present results show that plastic anisotropy alone can play an important role on the ductilc tearing of 
plates. 

CONCLUSIONS 

In this work tht? local approach to fracture has been used to model the crack propagation over long 
distances in wide plates. The rnodel is based on an extended Gurson t,ype model including the 
dcscription of plastic anisotropy and viscosity. The model can be used to rcprcscrlt, t,llo observed 
efTect of plate thickness on rnacroscopic fracture parameters ( R  and 2). The nlodel can also bc used to 
numerically investigate the effect of hardness gradients or plastic anisotropy and to propose solutions 
to optimize the processing of sheet materials. 
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