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ABSTRACT

In this paper we present results obtained via a newly formulated constitutive model for orthotropic
porous-plastic solids which is able to take into account microstructure evolution during �nite-strain
deformation processes. The microstructural geometry is described by means of an elliptic-cylindrical
Representative Volume Element (RVE) containing a coaxial cylindrical cavity; at the macroscopic level,
the internal state variables that are assumed to govern the microstructure distortion are the void volume
fraction and the void aspect ratio in the RVE cross-section. Major enhancements in the description of
the degradation of the strength properties in the fracture process zone are elucidated under imposed
deformation paths: peak stress values (beyond which softening takes place in the cavitating solid), stress
state triaxiality and internal state variable evolution are presented for voids with di�erent initial aspect
ratios in an elastic perfectly-plastic matrix material obeying associative J2 ow theory of plasticity.
These results are compared to those obtained by describing the behaviour of the void-containing material
by means of the transversely isotropic Gurson's model.

INTRODUCTION

Ductile tearing phenomena in metals constitute the macroscopic result of a micromechanical process
of (micro)void nucleation and growth to coalescence [1, 2, 3]. Elastic-brittle inclusions, of spheroidal
or cylindrical shape, trigger the onset of strain localization and, subsequently, di�use damage mecha-
nisms in the formerly fully-dense matrix material. Void nucleation takes place at the inclusion-matrix
interfaces and is related to bonding micro-defects; on the other hand, void coalescence takes place at
the ultimate stage of the void growth and interaction phenomenon and is due to the break-down of the
microligaments between neighbouring voids. This latter stage starts at high values of the void volume
fraction f , that is for high values of the ratio between the volume of voids within a sample material
element and the whole sample volume: usually f �= 0:2�0:25 is considered an upper bound for theories
that disregard void coalescence.

In this paper the above described behaviour of a progressively cavitating solid is simulated through
a constitutive model for orthotropic porous-plastic solids with cylindrical microstructure recently pro-
posed by the Authors [4, 5, 6]. To set a term of comparison, responses obtained via the transversely
isotropic Gurson's constitutive law [1, 2] are also presented under the same loading conditions.

The results shown in what follows have been obtained for a binary (composite) material which comprises
in the initial unstressed state a matrix obeying associative J2 ow theory of plasticity and microvoids
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process). The void-containing material is characterized by means of a cylindrical RVE with elliptic
cross-section containing a coaxial and confocal cylindrical void: by applying the kinematic approach of
limit analysis to this RVE one gets an (analytical) upper bound for the overall strength of the matrix-
void aggregate and the evolution laws for the internal state variables that describe the microstructural
geometry.

The major enhancement of the proposed orthotropic constitutive law with respect to the transversely
isotropic Gurson's model is the capability to describe the microstructure evolution in a much more
accurate way: this is accomplished by introducing a further geometric internal state variable, the void
aspect ratio in the RVE cross-section (see below).

It will be shown that microstructure distortion under predominantly deviatoric states of stress can be
accounted for in a proper manner; it has to be noticed, in fact, that the overall strength properties of
the void-matrix aggregate are extremely sensitive to the microstructural geometry, even at a constant
value of the void volume fraction (see [5, 6]).

The results proposed in this paper concern the quantitative evaluation of the degradation of the strength
properties in the fracture process zone at �nite strains due to void growth and to void distortion. Since
plane strain conditions are expected in the central portion of any fracture process zone, the nonlinear
material response is checked in the forthcoming numerical examples for di�erent linear (quasi-radial)
paths in the plane of the stretch ratios (see [7]) along the principal axes of the elliptic cross-section of
the void.

YIELD CRITERIA AND MICROSTRUCTURE EVOLUTION FOR ORTHOTROPIC

POROUS-PLASTIC SOLIDS

Let us consider a cylindrical RVE with elliptic cross-section containing a coaxial and confocal elliptic-
cylindrical cavity (see Fig. 1); this geometry does not allow to �ll the continuum without gaps but is
here assumed to approximately represent the actual microstructure of an array of hexagonal cylindrical
void-containing RVE with di�erent spacings along the x1 and x2 axes in the cross-section plane.

The microstructure can be described by means of two geometrical internal state variables, i.e. the void
volume fraction f and the void aspect ratio � in the RVE cross-section. Making reference to Fig. 1
they are respectively de�ned as:

f =
� b1b2

4

� a1a2
4

=
b1b2

a1a2
; (1)

� =
b2

b1
: (2)

In the above equations ai and bi (i = 1; 2) are, respectively, the axis lengths of the ellipses at the outer
boundary of the RVE cross-section and at the void-matrix interface aligned with reference axis xi.

The transversely isotropic Gurson's model was introduced for a subclass of the microstructures here
treated, namely for a1 = a2 and b1 = b2. � can thus be properly used to describe the eccentricity of the
elliptic-cylindrical void surface and to furnish a measure of the discrepancy from the Gurson's model,
which assumes � = 1 constant throughout the whole deformation process.

A further internal state variable has to be introduced if voids are allowed to deform under shear loading
conditions in the x1�x2 plane; this aspect is not addressed here because we assume that the considered
RVE is placed in the fracture process zone straight ahead of the current crack tip during a mode I crack
propagation process.
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Figure 1. Geometry of the Representative Volume Element

To study at the macroscale the void growth process the overall elastic and strength properties of the RVE
are required. In the remainder of this paper a main assumption has been introduced: the elastic moduli
of the void-containing solid (see, e.g., [8]) are �xed at their values in the undeformed con�guration.
This has been conceived in order to simplify the numerical treatment of the problem: if degradation of
the elastic sti�ness of the solid due to void growth has to be taken into account, a further dissipative
mechanism at the macroscale, usually referred to as continuum damage, should be considered along
with plasticity.

As far as the homogenized yield condition is concerned, an upper bound for it has been obtained by
applying to the RVE the kinematic approach of limit analysis [4, 5]. A simpli�ed velocity �eld in the
matrix volume at plastic collapse is introduced, which respects matrix plastic incompressibility -we re-
call that the perfectly-plastic matrix material is assumed to obey associative J2 ow theory of plasticity-
and uniform strain rate boundary conditions [9, 10]. For the sake of brevity readers are referred to [5, 6]
for details concerning the formulation and numerical time-stepping algorithmic treatment of the pro-
posed constitutive model, which comprises a yield locus (either expressed in terms of stress components
in the x1; x2; x3 reference frame or orthotropic invariants of the stress tensor [11]), associated ow rules
for the plastic components of the strain rate tensor and evolution laws for the geometric internal state
variables f and �.

Microstructure evolution can thus be studied by exploiting the e�ects on the RVE geometry of the
assumed velocity �eld at plastic collapse. While the evolution law for f is governed by the conservation
of mass principle, the variation of � is linked to the deviatoric state of stress in the RVE cross-section
through a much less simple law. Furthermore, in the next Section it is shown that coupled transversely
isotropic elasticity and plasticity can lead to a somewhat surprising evolution of � under imposed linear
paths in the plane of the stretch ratios in the RVE cross-section.

RESULTS

As mentioned in the preceding Section, the response of the orthotropic constitutive law at �nite strain
is here studied in the absence of shear loading conditions, namely in the case of principal axes of the
stress tensor always aligned with reference axes x1; x2; x3. It is thus not necessary to introduce objective
rates of the stress tensor, like the Jaumann or the Green-Naghdi ones, to integrate in time the nonlinear
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Figure 2. E�ect of the initial aspect ratio �0 on the nonlinear response of orthotropic porous-plastic solids at
k� = 0:0. (a) nondimensional Cauchy stress �11 vs logarithmic strain "11; (b) nondimensional Cauchy stress
�22 vs logarithmic strain "22; (c) void volume fraction f vs "11; (d) void aspect ratio � vs "11

constitutive law.

In what follows results are presented in terms of components of the Cauchy stress tensor and of the
logarithmic strain tensor aligned with reference axes x1 and x2. In order to manage nondimensional
quantities, the current values of the stress components are normalized with respect to the uniaxial
strength �y of the matrix material.

Assuming a strain-driven loading process, the nonlinear response of the constitutive law at a material
point is represented under linear paths of the following type:

%2 � 1 = k�(%1 � 1); (3)

where: %1 and %2 are, respectively, the stretch ratios along reference axes x1 and x2; k� is a proportion-
ality factor that de�ne the slope of the path in the %1 � %2 plane. In the Introduction these paths have
been de�ned quasi-radial: in fact they all depart from the undeformed state %1 = %2 = 1.

The initial void volume fraction, according to what explained in the Introduction, has been set equal
to f0 = 0:01 in the remainder of this Section.

Figure 2 shows the nonlinear model response under plane strain uniaxial deformation conditions with
constrained lateral movements (k� = 0:0). Results are presented in terms of: Cauchy stress vs loga-
rithmic strain along the x1 and x2 reference axes (because of "22 = 0 throughout the whole deforma-
tion process, �22 is plotted here vs "11); evolution of the internal state variables f and � in terms of
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Figure 3. E�ect of the initial aspect ratio �0 on the nonlinear response of orthotropic porous-plastic solids at
k� = �0:5. (a) nondimensional Cauchy stress �11 vs logarithmic strain "11; (b) nondimensional Cauchy stress
�22 vs logarithmic strain "22; (c) void volume fraction f vs "11; (d) void aspect ratio � vs "11

"11. These results are compared to those predicted by means of the transversely isotropic Gurson's
model (named � = 1=const. in the plots) in order to appraise the additional information gained
by means of the enhanced orthotropic constitutive model. Various initialization values for �, namely
�0 = 10; 3; 1; 1=3; 1=10, have been adopted in order to explain the e�ect of voids with quite di�erent
initial shape on the behaviour of the fracture process zone. The results are plotted as long as f � 0:4:
it is worth noticing that this extremely broad range (much wider than the range f � 0:2 discussed in
the Introduction) has been checked only in order to show the performance of the constitutive model.

As far as the stress-strain relationships are concerned, �0 does not play a main role: only the peak
stress values, beyond which softening takes place, appear to be signi�cantly a�ected by �0; this aspect
is discussed next.

Concerning the internal state variable evolution, it can be seen that f is only marginally a�ected by
�0 while � deserves a note. Even for �0 < 1, i.e. for b1 > b2 (see Fig. 1) the current value of � has a
tendency to approach the unitary value, that is the RVE deforms towards a circular cylindrical shape.
Only for high "11 values ("11 = 0:25 � 0:3 being a function of the �0 value) this tendency is reversed
and � decreases. This feature, which goes in the opposite way with respect to the expected one, is due
to the coupled e�ect of transversely isotropic elasticity and plasticity.

Figure 3 shows similar results under simultaneous plane strain traction along the x1 direction and com-
pression along the x2 direction (k� = �0:5). The most remarkable e�ect can be appreciated from Fig.
3c: f starts increasing as soon as the elastic limit is crossed but, at "11 �= 0:44, it decreases due to the
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Figure 4. E�ect of the initial aspect ratio �0 on the nondimensional peak values of Chauchy stresses M�11
(circles) and M�22 (squares). (a) k� = 0:0; (b) k� = �0:5

imposed deformation path. As a consequence the �11 vs "11 and �22 vs "22 plots show an hardening
stage in compression due to _f < 0. Fig. 3d displays the major enhancement of the proposed model with
respect to the Gurson's one: f vanishes at "11 �= 0:71 because � tends to a null value, that is because
the void assumes a needle-like shape. This feature cannot be modeled by means of the Gurson's model,
for which � = 1 at any deformation level.

Figure 4 collects plots of the nondimensional peak values of the Cauchy stresses �11 and �22 as a func-
tion of �0: for both k� = 0:0 and k� = �0:5 it can be seen that the range of initial aspect ratios here
investigated can reduce by about 30% the values obtained by assuming a circular cylindrical RVE,
thus leading to a more pronounced tendency to strain localization and subsequent fracture phenomena
within anisotropic porous-plastic solids.

An important parameter to be considered in ductile tearing phenomena is the triaxiality stress ratio at
the crack tip [12, 13], which can be de�ned as:

ktriax =
�eq

�h
; (4)

where �eq is the Mises e�ective stress and �h is the hydrostatic stress. ktriax usually varies in the range
1

3
� ktriax � 1.

Figure 5 presents the evolution of ktriax along the imposed deformation paths considered above. It has
to mentioned that the extremely high values of ktriax reached at the end of the deformation process
characterized by k� = �0:5 are due to the fact the �h approaches an almost null value.

Further results will be presented in a forthcoming paper in order to get insights into the coexisting
phenomena of strain softening due to void growth and distortion and strain hardening due to the ma-
trix constitutive law. Loading conditions at �xed ktriax will be also included in order to quantitatively
evaluate the e�ect of non-circular void cross-section and of void distortion on the onset of strain local-
ization in the fracture process zone that leads to the subsequent ductile tearing phenomenon.
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Figure 5. E�ect of the initial aspect ratio �0 on the evolution of the triaxiality parameter ktriax. (a) k� = 0:0;
(b) k� = �0:5
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