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ABSTRACT 
 
The cohesive crack model is a relatively simple and accurate means of describing fracture in concrete and other 
quasibrittle materials. In its standard application, it is assumed that all the material surrounding the cohesive crack 
remains linear elastic, but detailed analyses show that the tensile strength is exceeded within the supposedly elastic 
region, which means that secondary cracking must occur. This paper describes a simple extension of the cohesive 
crack to include secondary cracking, and discusses the results of its application to three-point-bend test specimens.   
 
 
INTRODUCTION 
 
The cohesive crack model, first proposed by Barenblatt and Dugdale [1,2] in very specific contexts, was later 
extended by Hillerborg [3] to become a general approach to the fracture of concrete in tension. The model has  
proved to be relatively simple and efficient to describe the fracture of concrete and other quasibrittle materials, at 
least in the cases where failure occurs through a single crack or a set of discrete cracks. 
 
One of the simplifications usually included in the cohesive crack model is that all nonlinear behavior is localized in the 
cohesive zone while the material surrounding the crack remains linear elastic. Although this hypothesis is not 
conceptually necessary [4,5], it simplifies both theoretical and numerical analyses of cohesive crack problems and 
has become a basic ingredient of the standard formulation. 
 
A limitation of the standard formulation of the cohesive crack model is that it leads to solutions that contradict one of 
the basic hypotheses of the model, namely, that a cohesive crack forms in at a formerly elastic point when the stress 
reaches the tensile strength ft. Indeed, in most of the solutions of single cohesive crack problems, more or less large 
regions have been found in the supposedly elastic bulk material where the tensile strength is exceeded. For example, 
as shown in Figure 1, a small but finite region over which the largest principal stress exceeds the tensile strength is 
found around the cohesive crack tip in a three-point-bend specimen in which a cohesive crack is made to grow in 
mode I from a relatively deep notch [6,7]. For unnotched thee-point-bend specimens it has long been suggested that 
the standard solution involved stresses exceeding the tensile strength over allegedly elastic regions [8], as 
quantitatively demonstrated by Olsen [9] some of whose results are compiled in Figure 2, which shows large areas 
over which the tensile strength is exceeded. 
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Figure 1: Isolines of maximum principal stress at peak load for a three-point-bend notched beam. The tensile 
strength ft is exceeded over a small region around the cohesive crack tip. (Adapted from [7].) 
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Figure 2: Isolines of horizontal normal stress for a three-point-bend unnotched beam for various relative depths a/D 
of the cohesive zone . The tensile strength ft is exceeded over the gray shadowed regions. (Adapted from [9].) 

 
The foregoing facts imply the following 3 consequences: 
 

1. The standard approach to the cohesive crack model leads to inconsistent solutions whose accuracy needs 
to be assessed through a higher level model. 

 
2. According to the cohesive crack model itself, secondary cracking must occur in the regions where the 

tensile strength is exceeded. 
 
3. A higher-order model is needed that, while preserving the main concepts of the cohesive crack model, 

eliminates the inconsistency and adequately describes the secondary cracking. 
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Figure 3: Generic softening stress-crack opening curve. 

 
This work presents one of the many possible higher-order models and describes the results of its application to the 
three-point-bend unnotched beam. The model has the advantages of being conceptually and formally simple, and of 
using only concepts coming from the cohesive crack itself. 
 
 
DIFFUSE CRACK MODEL 
 
The diffuse crack model developed in this work is a three-dimensional generalization of the unidimensional model 
proposed by Planas and Elices to describe shrinkage microcracking in concrete [10]. The basic ingredient of the 
model is the cohesive crack, which is assumed to form perpendicular to the maximum principal stress when this 
reaches the tensile strength f t . After the cohesive crack has formed, the stress transferred across its faces is 
assumed to be given, for monotonic mode I crack opening, by a unique function of the crack opening w : 
 
 σ = f (w)  (1) 
 
where f (w)  is usually known as the softening function and (for concrete) has the shape depicted in Figure 3.  
 
To build the diffuse crack model we use the basic cohesive crack model just described together with some simple 
complementary assumptions regarding crack kinematics. For simplicity, we first describe the uniaxial model and then 
give the generalization to three dimensions. 
 
Uniaxial Model 
The basic idea in the uniaxial model is that diffuse cracking can be described as an array of parallel cohesive cracks, 
spaced at a relatively small distance s , in an otherwise elastic bar.  If the cracks are close enough, we can describe 
their macroscopic effect as a distributed inelastic strain ε p  given by 
 

 ε p =
w
s

 (2) 

 
where w  is the average crack opening. 
 
The uniaxial stress transferred through the crack array for monotonic inelastic stretching, directly derives from the 
softening curve (1) as 
 
 σ = f (sε p) = f s(ε

p)  (3) 
 
where fs (εp )  is a stress-inelastic strain curve which displays softening. However, if the crack spacing is small, the 
softening rate tends to vanish, and the model displays perfectly plastic behavior. Indeed, for a softening curve such 



as that in Figure 3, with an initial trend approximately linear, defined by the horizontal intercept w1, the softening or 
stress drop ∆σ  is given by 
 

 ∆σ = ft

s
w1

ε p  (4) 

 
Hence, for infinitely close cracks, s  vanishes and so does ∆σ . Therefore, as far as monotonic stretching is 
concerned, the behavior tends to perfectly plastic as the crack spacing is reduced. 
 
To complete the model, we need to specify the unloading behavior because eventually a main cohesive crack will 
develop, and as it grows, the zone of diffuse cracking may unload. Planas and Elices [10, with the results of other 
authors [11,12], ] justified that when a crack opens only slightly it does not close again upon unloading. We adopt 
here this point of view and assume that the inelastic strain ε p  is fully irrecoverable. This is formally identical to 
assuming an elastic-plastic stress-strain behavior. The behavior is perfectly plastic if s = 0, and is plastic with 
softening if s ≠ 0. 
 
Triaxial Model 
The simplest way to generalize the former uniaxial model to three dimensions is to assume an elastoplastic behavior 
with a Rankine criterion and associative flow rule. The corresponding equations are 
 
 σσ = E(εε −− εεp )  (5) 
 σ I − fs( ˜ ε p) = 0  (6) 
 dεεp = PI d˜ ε p  (7) 

where σσ   is the stress tensor, E  the fourth-order elastic tensor, εε  the strain tensor, εεp  the inelastic strain tensor, σ I  
the maximum principal stress, ˜ ε p  the equivalent inelastic strain, and PI  the projector of σσ  in the direction of its first 
principal stress. The function f

s
( ˜ ε p)  is identical to that defined for the uniaxial model, by equation (3).  

 
 
NUMERICAL ANALYSIS  
 
The model just described was applied to analyze the influence of diffuse cracking on the predicted behavior of 
unnotched three-point-bend beams. Geometrically similar beams were analyzed with a span-to-depth ratio of four. 
Five beam depths were considered, scaled according to the ratios 1:2:4:8:16. Three calculations were made for each 
beam depth: 
1. Standard cohesive crack model: main cohesive crack running through elastic material. 
2. Nonsoftening diffuse cracking: main cohesive crack running through a material with (potentially) infinitely close 

diffuse cracks (crack spacing s = 0). 
3. Softening diffuse cracking: main cohesive crack running through a material with diffuse softening cracks 

corresponding to an assumed minimum crack spacing identical to the finite element size (s = D/64, where D is 
the beam depth). 

 
The softening curve used in all the calculations (the only material property required apart from elastic constants) is 
shown in Figure 4. This corresponds to an actual microconcrete tested in the authors’ laboratory. 
 
The numerical simulations were carried out using ABAQUS. Softening spring elements located along the central 
cross section simulated the main crack. The surrounding material was simulated through a user-defined routine 
(UMAT) implementing the model defined in the previous section (none of the finite element codes accessible to the 
authors implement a Rankine plastic criterion with associative flow rule). 
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Figure 4: Softening curve used in the computations 
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Figure 5: Numerical modeling: (a) finite element mesh over the right half-specimen, (b) domain subdivision—I for 

normal elements and II superelement. 
 
The finite element mesh used to model the right half of the specimen is shown in Figure 5, together with the definition 
of the elastic superelement used to speed up the calculations, which were driven in arc-length control, and were free 
of problems for the standard cohesive crack model. When diffuse cracking was included, the convergence rate was 
slower, and problems arose in continuing the calculation for large specimens where strong snap-back was present, 
particularly for the diffuse cracking with softening. Spontaneous unloading sometimes occurred, which required 
direct intervention of the operator (stopping just before unloading and restarting the calculation using the saved 
results and a different loading step).  
 
 
RESULTS  
 
The results are shown in dimensionless form, so they are useful not only for the particular microconcrete considered 
here, but also for any other material with a softening function of identical shape. In particular, the dimensionless size 
of the specimen is obtained by dividing the depth of the specimen D by the characteristic length lch  defined as 
 

 lch = EGF

ft
2  (8) 

 
where E is the elastic modulus. The value of the characteristic length of the microconcrete was lch = 122 mm,. while 
for an ordinary concrete lch ≈ 300  mm. 
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Figure 6: Right half of the specimen; the dark rectangle shows the zone, magnified in the following figure, where 
diffuse cracking takes place. All dimensions are referred to the beam depth. 

 
One of the main results is that the diffuse crack model relieves the overstress appearing in the standard cohesive 
crack approach, so the stress nowhere exceeds the tensile stress. Of course, this is done at the expense of inelastic 
strains appearing in the material. The inelastic strain concentrates in the small dark rectangle shown in Figure 6, and 
its distribution inside that rectangle is shown in Figure 7 for various cases. For nonsoftening diffuse cracking, the 
inelastic strain is smoothly distributed, and is more intense for small sizes (7a) than for large sizes (Figure 7b). For 
softening diffuse cracking the inelastic strain is again more intense for small sizes (Figure 7c) than for large sizes 
(Figure 7d), the distribution being less smooth and with localization bands that may be identified in small sizes (Figure 
7c). This is the main difference between the two diffuse crack models. 

 
The first consequence of the localization is that the maximum inelastic strain is about 5 times larger in the softening 
diffuse cracks. This is shown in Figure 8a together with the influence of the beam depth. Although the existence of 
localization bands is numerically significant, its effect on the experimental results is nil. In fact, the softening associated 
with the worst strain localization is shown in Figure 8b and is less than 0.4% of ft  for all the investigated sizes. The 
corresponding (maximum) crack opening is w ≈ 0.003GF / f t ≈ 0.1µm  for a typical concrete with 
GF = 100N/m and ft = 3 MPa . This means that the localization bands, which could be seen as isolated cracks, are 
virtually impossible to detect experimentally since their opening is in the submicron range. 
 
Figure 9 shows the load-displacement curves for two beam depths calculated in the three ways defined in the 
previous section. The effect of including diffuse cracking is seen to be marginal. In particular, the influence on the 
peak load never exceeds 1.2% of the value computed by the standard method  
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Figure 7: Inelastic strain distributions for diffuse cracking: (a) and ( b) nonsoftening; (c) and (d) softening. The 
parameter ˜ ε pl

∗ = ˜ ε p E / f t is the equivalent elastic strain referred the elastic uniaxial strain at peak stress. 
 



 
Figure 8: Size effect on inelastic strain localization: (a) maximum inelastic strain versus beam depth for the two 

models of diffuse cracking, and (b) maximum amount of softening occurring in the diffuse cracks versus beam depth. 
 

 
Figure 9: Comparison of load-displacement curves computed according to the three models: (a) for D / lch = 0.15; 

and (b) for  D / lch = 1.20. 
 
CONCLUSIONS  
 
• Both versions of the diffuse crack model described here (nonsoftening and softening) seem to be adequate to 

eliminate the inconsistency of the standard cohesive crack model  and to describe secondary cracking that 
must necessarily occur in specimens and structures failing through a single main crack. 

 
• Although the softening version of the model  shows localization at a numerical level, its influence on the 

mechanical response is negligible and the localizations are impossible to detect experimentally since they 
correspond to localized displacement jumps of the order of tenths of a micron. 

 
• Since in the softening version of the model some degree of arbitrariness is present (only one crack per 

element is allowed and the size of the element is arbitrary) we suggest using the nonsoftening version unless 
there is evidence against this (e.g. if a localization of secondary cracking is known to exist).   

 
• One situation where multiple cracking is known to exist is that of cracking induced by shrinkage or thermal 

gradients. In such cases, the softening version of the model can be used to follow the evolution of diffuse 
cracking as well as of main cracks (a main crack would be represented, then, as a crack band). 

 
• For three-point-bend unnotched beams, the mechanical response is affected only slightly by the secondary 

cracking. The standard model (which is simpler and faster) can thus be used for most practical purposes  
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