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THE LOSS OF STABILITY AND FAILURE OF PRE-STRSSED
CONSTRUCTIONS UNDER TEMPERATURE EFFECT

S. Alexandrov* and N. Chikanova#

The structure consisting of an infinite plate and circular inclusion
which is inserted under a forced-fit condition is considered It is
assumed that the material of the plate and inclusion is not the
same. Moreover, the material of the inclusion is harder than that of
the plate. The structure is subjected to the homogeneous
monotonically increasing temperature field. At a sufficiently large
value of the temperature a plastic zone begins to form at the inner
surface of the plate and moves inwards with the increasing
temperature. In the plastic zone the J, flow theory of plasticity is
used. Because the plate and inclusion are thin they were taken to
be in a state of plane stress. An application of the solution
obtained to the problem of instability in the inclusion is
considered. Another applications of the solution to the failure of
the structure are discussed.

INTRODUCTION

With the extensive application of pre-stressed techniques comes the requirement for
both analytical and numerical evaluation of the stress-strain state of structures under
different service conditions. These solutions are very important for more or less exact
prediction of the subsequent behavior of the structure. A plate with a circular hole or
inclusion is a structure which is often used in practice. The theoretical investigation of
the elastic-plastic behavior of tubes, subject to various end conditions, has been
treated at great length in many papers and books (for example, Hill (1) and Johnson
and Mellor (2)). In these works the Tresca and von Mises yield criteria have been
used. The analytical solutions using the Tresca yield condition have been obtained.
For the von Mises yield condition some numerical technique based on the
characteristic method has been proposed in (1) to find the stress-strain state in the
expansion tube for an arbitrary but constant axial deformation. In all of these studies
the stress boundary conditions at the inner radius of the tube often led to a statically
determinate problem. However, in most expansion problems it is not the pressure but
rather the interference between the hole and the inclusion (disk) that is known. As a
result, it is necessary to define the relationship between interface pressure and level of
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interference. Because of this, no statically determinate problem is possible and the
joint solution of static and kinematic equations is required. The general approach to
these class of problems in the frame of deformation theory of plasticity was given by
Potter and Ting (3). The review and detailed analysis to the problem of interference of
the plate and circular inclusion using deformation theory of plasticity were done by
Ball (4). In the frame of incremental theory of plasticity there is a great number of
results for the material obeying the Tresca yield condition (Guven (5), Guven (6),
Lippmann (7), Mark (8), Bengeri and Mark (9) and Mark and Bengeri (10)). For this
condition, as it is noted in (7), upon the assumption of plane stress the analysis
becomes comparatively simple. Because of this, the analytical solutions to elasto-
thermo-plastic problems were found in (7), (8), (9) and (10). In contrast, for the
material obeying the von Mises yield criterion the various numerical procedures were
proposed by Tuba (11) and Orr and Brown (12). As the strain-stress state in the
structure is important not only by itself but rather as the basis for subsequent
investigations such as stability analysis, determination of the crack and damage
initiation conditions and so on then it is worth to find the distribution of the stresses
and strains by an analitical way. In the paper we present some solution to the problem
of interference of an infinite elastic-perfectly plastic plate with an elastic circular
inclusion subject to a homogeneous changing temperature field. The solution requires
only some numerical treatments of an ordinary differential equation to obtain the
distribution of stress in the plate with respect to the polar radius and time as well as
the dependence of stresses and strains in the inclusion on the time. The solution is
applied to the problem of loss of stability in the inclusion.

STATEMENT OF THE PROBLEM

Consider an infinite plate with a circular hole in which a smooth circular disk is
inserted under a forced-fit condition. The material of the plate is softer than the
material of the disk and at the moment of insertion both are in elastic state. Then, the
plate with the inclusion is subjected to the homogeneous temperature field which is
described as monotonically increasing function of time, t. When the contact pressure
reaches certain magnitude  a plastic zone arises and develops around the perimeter of
the hole. The solution is based on the assumption of small strains in two dimensional
plane stress.We define the total strains as the sum of elastic, thermal and plastic
components

T e 1L e T
e.=¢ el e, e,=e; e e, e, =eite, Fel i (1)

In the cylindrical coordinate system there are only the components o; and Og that are
not equal to zero, therefore, the von Mises yield criterion has the form

sr2+<52—(5s,=k2 ............................................................................ (2)
From thermo-elasticity
Eoms 2n, B =sy/2m, Ei=s/2n e=0f3K, e =o(T=Tp) (3)

where s;, Sq are the components of stress deviator, o is the hydrostatic stress, k is the
shear yield stress, &, &g, &, are the components of strain deviator, 3e is the volume

expansion, W is the shear modulus of elasticity , K is the bulk modulus, o is the
linear coefficient of thermal expansion, T is the current t@mperatuye_:, To is the initial
temperature. The associated flow rule with the von Mises yield condition gives

Er=s, ER=hs EP=As, AZ 0. (4)
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where the dots denote the differentiation with respect to time. The non-trivial
equilibrium equation can be written in the form

00, /O +(0, =) /L= 0o (5)
The solution of set (1)-(5) must satisfy the following boundary conditions

u, =0 at r=0,

lu|<eo, |o|<oo, [Og|<oe at r—oeo (6)
u -4 =A 0,-6,=0 at r=R

[ul]:O. [0,_]=0 at r=y

Here and in what follows "A" denotes the magnitudes corresponding to the material of

the disk and "[]" denotes the jump of the corresponding quantities and Y is the radius
of elastic-plastic boundary and R is the radius of the contact surface.

THE THERMO-ELASTIC SOLUTION

There is a homogeneous strain-stress state in the disk.
& =8 =uy/R, & =2u,(20-3K)+9IRER(T- T,) /(4 +3K)
&, =6, =18Ki(u,/R - o(T-T,)) /(41 +3K)

where up=uy(t) is the radial displacement of the contact surface. The solution in the
elastic zone of the plate has the form

e; =—e; =—B/r’, e} =9Ka(T-T,)/(3K +4p)

o; =-2u(B/r* + 9Ko(T - T, )/(3K + 4n)) o5 = 2u(B/r” — 9Ka(T - T, ) /(3K + 4y
where B is an arbitrary function of time.

THE STRESSES IN THE PLASTIC ZONE

In oder to satisty yield condition (2) let us introduce some function ¢(r, t) as follows

s, =2ksin@/3, o =k(coso+sing/v3) 9)
Then, from equation (5) we find
/R =|(V3singy —cos, )/(V3sing-cosg)e et (10)

where @y, is the value of the function ¢ at r=R. Let @, be the value of the function ¢ at
r=Y then the radius of elastic-plastic boundary is

Y/R =|(V3sing, - cosg,)/(V3sing, —cosg, Je " (1)

From boundary conditions (6) and the condition that the plastic portions of the strains
are equal to zero at r=y we have

uo/R = k(4fi + 3R )(v3sin@y +cosey ) /(18GR)+&(T-T,) ... . (12)
oT~T,)=~k(4p +3K)(sing, ++3cosg,)/(12v3uK) (13)
B/RZ = yzk(cosq)Y ~+/3sin (pv)/(4”) .................................................... (14)
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Now, to determine the stresses and strains from (7) and (8) and stresses from (9) due
to (10), (12), (13) and (14) it is necessary to find @ as the function of ?, from the
differential equation

o, /de, = A9y, )
where A(Qg,9, ) is the known function which may be expressed by virtue of (10)-

(14).The boundary condition for this equation is ¢y=@, and @r=@p where @ must be
determined from (7) and (8) when no plastic zone is available. Thus, @, depends on
the thermo-elastic properties of both materials and the value of fit-tolerance and
corresponds to the temperature at which the elastic stresses in the plate satisfy
condition (2) at r=R.

EXAMPLE AND DISCUSSIONS

Consider the structure consisting of the steel disk and aluminum plate
(00/6=0,6:1u/[i=2.9K/K=0.258k/K= 0.002). Figure 1 shows the variation
of the temperature at which the plastic zone begins to form, T, with the value of fit-

tolerance. Thus, the maximum value of fit-tolerance at which the insortion is available
without plastic strains approximately equals 0.0034. The dependence of elastic-plastic

boundary radius on the temperature at A = 0 is plotted in Figure 2. The distribution of
the stress O, for the different values of temperature at A =0 is shown in Figure 3.

O, in the disk is plotted in Figure 4 as function of the temperature. These calculations
assist to investigation of the stability loss in the disk with subsequent failure of the
structure. In the Figure 4 it is shown the dependence of the critical thickness of the
disk at which the loss of stability takes place, H, on the temperature. The solution
presented may be applied for the analysis of different phenomena leading to the failure
of the structure such as stability loss of the plate, damage initiation and so on. In some
cases it requiers the knowledge of the plastic strains which may be determined from

the equation dur/d(‘pR=<D((p’(pR’(Py) which must be integrated along the

characteristics (\/gsin(p—coscp)/(\ﬁsin(pR —cos(pR)=Ce“/i(“’""") where C is a
constant along any charachteristic and  ®(9,9g,9,) is the known function of its

arguments and @y is the known function of @r due to (15).

SYMBOLS USED
o = coefficient of linear thermal expansion (mm/mm/°C)
A = fit-tolerance (m)
€:-€.€, = total normal components of the strain tensor
v = radius of elastic-plastic boundary (m)

H = thickness of the plate and disk (m)
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K = bulk modulus (MPa)

k = shear yield stress (MPa)

&:+€6.€, = the deviatoric components of the strain tensor

r = current radius (m)

R = radius of the contact surface (m)

o = hydrostatic stress (MPa)

0:,09,0, = normal components of the stress tensor (MPa)
8r»8¢,8, = deviatoric components of the stress tensor (MPa)
T = current temperature (°C)

t = time (s)

u, = radial displacement (m)
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