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STEADY-STATE ANALYSIS OF AN ARRAY OF SEMI-INFINITE EDGE
CRACKS IN A TRANSFORMATION TOUGHENING CERAMIC

J. 1. Andreasen and B. L. Karthaloo™

This paper presents an analysis of arrays of semi-infinite edge
cracks in transformation toughening ceramics under steady-
state conditions. It is demonstrated that the transformation
sones between the cracks cannot coalesce, but that for trans-
formation densities above a critical value two transformation
zone solutions are possible. One solution pertains to quasi-
static crack growth and the other to pretransformed materials.
The latter can cause excessive transformation to appear dur-
ing loading hefore crack growth is initiated. The multiplicity
of solutions is a consequence of the semi-infinite crack length.

INTRODUCTION

A model for periodical arrays of semi-infinite edge cracks in transformation
toughening ceramics is studied. This model can be considered as a prelude
towards analyzing surface damage of ceramic materials.  An array of finite
surface cracks very effectively shields the crack tips in comparison with single
surface cracks. For crack distances less than about 5 times the crack lengths
the stress intensity factor for an array of finite surface cracks is within 2% of
the stress intensity factor for a similar array of semi-infinite surface cracks. The
multiplicity of solutions that emerges from the study of steady-state growth of
semi-infinite edge cracks is not found in a similar study of finite surface cracks.
Andreasen and Karihaloo (1).

Surface grinding of transformation toughening ceramics can induce a cer-
tain strengthening of the component if the grinding gives rise to transforma-
tion. The grinding-induced transformations can be the result of at least two
mechanisms. First. as the contact stresses between the grinding agent and the
ceramic are locally very large, and possibly singular if the grinding agent con-
sists of irregular particles, transformation is likely to take place in the vicinity
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of contact. A second, less direct mechanism is that the grinding just induces
small cracks in the surface. but the transformation is brought about by subse-
quent loading of the ceramic during either the grinding process or service. The
latter mechanism can be expected to give rise to transformation in a thicker
surface layer in comparison with the former mechanism. Limited crack growth
can be sustained by an array of cracks, where R-curve behaviour induced by
transformation prevents the instability of this configuration that would oth-
erwise occur. In the following, this mechanism where the transformation is a
result of crack growth will be considered.

MODEL DESCRIPTION AND THEORY

The model of an array of semi-infinite edge cracks is depicted in Fig. 1.
An infinite array of equally spaced parallel cracks C' (spacing d) is loaded at
infinity by a constant normal stress 0. Fach crack is bounded by a zone
S of transformation formed during loading and crack growth. The zones are
assumed to continue along the crack faces to infinity along the negative x-
axis. such that steady-state conditions prevail. The transformation strains are
assumed to be constant and purely dilatational in the zones in accordance
with the supercritical transformation assumption. The transformation zone
boundary ahead of a crack is determined by the critical mean stress criterion.
Fffects from elastic mismatch between the matrix and transforming particles
are neglected, and reverse transformations are assumed not to occur.

The cracks are modelled by a pile-up of appropriate dislocations. The den-
sity of the dislocations in the pile-up is adjusted to meet the traction free crack
condition. This condition together with the critical mean stress criterion is ex-
pressed through the following two coupled integral equations which are solved
numerically
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The normalized dislocation density function Do(t) is defined such that the
Burgers vector between t and t+dt is b= (12(1+v)a;, Do(t)/ E)dt. The weight
functions ¢(¢.€) and f(n) are defined by
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From (1) the dislocation density function Do(t) and the transformation zone
boundary S can be obtained for a given load o> and value of the transformation
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strength parameter w given by

Ec,0T /1
... P( +”> 3)

o 1—v

07 and ¢, are the dilatation and volume fraction of transformable particles
respectively, and v is Poisson’s ratio.

The specific solution for quasi-static crack growth at steady-state conditions
are obtained by imposing the following side conditions
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The first condition ensures quasi-static crack growth by fixing the value of
the stress intensity factor at the crack tip to the inherent toughness of the
material, K7 = K¢, The second condition ensures steady-state conditions on
the transformation zone shape by defining the height of the wake.

RESULTS AND DISCUSSION

On the basis of the model described above for an array of parallel semi-
infinite edge cracks some results relating to the strengthening of ceramics with
damaged surfaces and transformation induced by crack growth are presented
in the following.

An upper limit on the transformation zone height H can be obtained by
considering the second of the two equations (1) for the critical mean stress
criterion. As the applied stress o> is less than the critical applied stress og”
the mean stress o2 due to the dislocations given by the integral in the second
equation (1) must give a positive contribution to the mean stress, so that the
following inequality must hold

0 sinh(27r£°;;—‘)
Og/_ong(t)< )—1>dt (5)

cosh(2r 2=t) — cos(27 %

Numerical studies show that the dislocation density function Do(t) is always
positive. For yo > d/4 the integrand increases monotonically for fixed ¢, and
tends to zero from below as zg is allowed to increase. Therefore the integral
is negative for yo > d/4 and the inequality (5) is violated. The limiting value
of the transformation zone height is therefore H = d/4, and coalescence of
neighbouring transformation zones cannot take place. At this limit for H, the
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zone front diverges, i.e. o — 0. The critical value of the transformation
parameter w, for which a diverged transformation zone is a solution is

( FL) )
e = 18§ b = {f—= (6)
d

For nondiverging transformation zones, solutions to equations (1-4) are ob-
tained numerically. The strengthening effect for various crack spacings /L is
depicted in Fig. 2. It is seen that solutions to equations (1-4) can be obtained
for the transformation parameter w equal to the critical transformation param-
eter w, of equation (6) but with lower strengthening than that corresponding
to a diverged zone. For these solutions, the transformation zones remain fi-
nite. and for the transformation parameter w greater than the critical value
w, but less than a certain maximum Wz, two finite transformation zones are
solutions to (1-4). The limits on w are shown in Iig. 4.

The result for the crack spacing d/L = 50 shown in Fig. 2. is redrawn in a
slightly more explicit form in Fig. 3a. The stable region is now above the curve,
the unstable region below it, and the curve itsell pertains to quasi-static crack
growth. The transformation strength w is fixed by the parameters entering (4)
and is thus a material constant for a specific microstructure. For w = 22, the
line A-D is indicated in the diagram. This line is followed from A to D as the
applied load o is increased. The part from A to B is in the stable region,
and as the load is increased from point A no crack growth appears. When
point B is reached quasi-static crack growth is possible. A further increase
in the load will lead to unstable crack growth as indicated by the broken line
between B and C. The derivative of the crack tip stress intensity factor Ktp
with respect to the applied load o is positive at the point B as indicated in
Fig. 3b. Therefore it is not possible to go from B to C just by increasing the
load on the specimen. If however the situation pertaining to point C is brought
about by some other means, quasi-static crack growth is possible at a higher
load at C compared to the load at B. Increasing the load from point C towards
point D leads to a decrease in the crack tip stress intensity factor as indicated
by the negative derivative in Fig. 3b at point C. Therefore a new stable region
is reached and the point C is a ”superstable” point at which an increase in the
load stops crack growth by enhancing the transformation, i. e. the toughening
effect of the transformation grows more rapidly than the increase in applied
stress intensity factor. Under these circumstances failure will initiate first by
divergence of the transformation zones and thereafter by crack growth as the
surrounding matrix material loses its ability to enclose the transformation zone.
Due to the assumption of no reverse transformation the configuration of larger
transformation zones pertaining to the left branch cannot revert to the right
branch simply by lowering the applied load, as the derivative of the crack tip
stress intensity factor KtP with respect to the applied load o™ is positive for
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fixed transformation zone shapes, as indicated by the dotted line in Fig. 3b.

The transformation zone sizes in terms of the transformation zone boundary
intercept with the crack line extension x. and the height of the transformation
zone y. = H associated with the quasi-static solutions of Fig. 3a are shown
in Iig. 3¢ with the points B and (' indicating the load cases just described.
Transformation zone shapes for crack spacing d/L = 50 and various loadings
o™ are depicted in Fig. 3d.

The toughening ratio K™ /K corresponding to the strengthening of Fig. 2
is depicted in Fig. 5. The broken curve is the limiting result for a single semi-
infinite crack obtained by Amazigo and Budiansky (2) and the dotted line
pertains to the critical value of the transformation parameter w. given by (6).
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Figure 1: Model configuration Figure 2: Strengthening for arrays of semi-
infinite cracks
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Figure 3: Characteristic results for d/L=50
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Figure 4: Critical and maximum value
of the transformation parameter M
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Figure 5: Reciprocal toughening ratio
for arrays of semi-infinite cracks
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