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MODELING OF THE LOCALIZED UV-DEGRADATION DAMAGE IN
POLYMERS

1.D.Skrypnyk", H.D.Hoekstrat, J.L.Spoormakert

The aim of the present work is to model UV-degradation loca-
lized on the micro scale. The system of evolution equations for
the free radical chain mechanism for the oxidation of polyole-
fines, which accounts for branching, diffusion of polymer chains
and stresses, is derived. Unlike the majority of the studies, the
derived equations model the change of fractions caused not only
by chemical reactions or oxygen diffusion, but also by the mo-
tions of polymer chains. It is shown, that this system has two
threshold levels of controlling parameters. Under the lower level
no deviations occur: every fluctuations of fractions from the
uniform state diminish in time. Above the higher level the trivial
distribution can not exist. At intermediate level localized peaks
on top of the homogeneous distribution can occur.

INTRODUCTION

The long service time of polymers used outdoors result in its degradation. The
auto-oxidation is considered as its leading mechanism (Bolland and Gee (1)).
Three scales of localization of degradation are observed: a) the formation of
oxidation products in surface layers; b) selective degradation of amorphous zone;
¢) damage of local sites of the amorphous phase.

The aim of the present paper is to construct the mathematical model of
degradation localized on the micro level.

FORMULATION OF A PROBLEM

The following assumptions are accepted:
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1. The amorphous phase of the polymer is an open thermodynamical system
exposed to: ‘
e irradiation;
e mechanical loading;
e a constant transport of dissolved oxygen from the surface.
2. Following Bolland and Gee (1) and Vink (2) the mechanism of a chain auto-
oxidation of free radicals is assumed:

initiation: Polymer —— 2R k (1.1)
propagation: R +0, — RO; k, (1.2)
RO, +RH —™ 5 ROOH + R’ k, (1.3)

branching: ROOH —" RO"+'OH k, (1.4)
RO’ + RH — ROH + R’ ks (1.5)

HO® + RH —» R" + H,0 k, (1.6)

termination: R® + R® —inert product k7 (1.7)
RO; + R* — inert product kg (1.8)

RO; + RO; —inert product +O, ko (1.9)

3. The average mass fraction of reagents which take part in these reactions is
very small. Therefore the amorphous zones can be considered as a weak
solution.

4. Also, the concentration gradients of the reagents are small.

. The system is isothermal and is under the condition of mechanical balance:

there are no viscous flows.

w

Statements 3 and 4 imply the principle of local thermodynamic balance (Ni-
colis and Prigogine (3)). For a weak solution of reagents this leads to the as-
sumption, that the rates of the reactions are proportional to the mass fractions of
the reagents. An exception is the initiation of free radicals. The rate of initiation
strongly depends on the applied stress (2). On other hand, the formation of free
radicals due to link rupture causes a redistribution of stresses in the material.
Other links can become overstressed. Therefore, non-linear positive feedback is

supposed (Skrypnyk (4)):
oxX
7y =k exp(aX). 2)
The evolution equations for the reagent mass fractions can be obtained from
the principle of the mass balance (4). Since there are no viscous fluxes, the mass

transfer can occur only by diffusion. Therefore, six “diffusion-reaction” equa-
tions (according to the number of reagents) can be formed.
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However, certain simplification can be done. Since the oxidation reaction (1.2)
runs considerably faster (Audouin et al (5)), than the dissociation reactions (1.3),
(1.5), (1.6), it can be supposed, that the mass fraction of peroxy radical [RO,] is
always near its equilibrium value. Further, the equations (1.5) and (1.6) simulate
a linear process with negative feedback (4). Therefore, these phenomena should
not cause essential retardation effects at large time intervals. Thus, the mass frac-
tions of [ROOH], [RO'] and [OH] can be excluded from consideration by the
assumption, that the concentration of above reagents is near its equilibrium va-
lue. As a result, following system of equations can be derived:
17204 X

—(”—:z)xﬁwc, exp(aX)+3kZ -k XY -k, X'~k XZ @3.1)
oY Y By~

ra Dy =+ 52’ (Y-Y)-k, XY + k27 (3.2)
k, XY —k,Z —k XZ -k, Z* = 0. (3.3)

ANALYSIS OF THE UNIFORM STATES

The trivial solutions to the system above are the solutions to the reduced system:

A(xr.2(X.7)...)=0; {Y,=g(X,...);
Frzx.n..)=0, = Y,=G(X,...),
The solution exist, if the curves (4) are crossed. For the equations (3.1)-(3.3) of
the auto-oxidation scheme these curves (4) are described by the formulae:
_ U X+ k) (K, exp(@X) -k X*)
1 2k, X —ky)k, X ’
AL L S
D, +6°k, X
Since constant ko is as a rule much smaller than the others, the term koZ? is
skipped in equations (5). Other parameters can be approximately evaluated as
follows (4):
i =10" Ms",  k=4.1-10° Mss)', ks =72735s", Ky =2.0-10° M's) ™,
ks =10° M:s)!, Dy=4.610"" m>s', §=10*m, Y=8.4-107 Mt (6)

C))

(5.1)

(5.2)

If the value of the parameters change, the shape and the mutual location of
the curves (4) can vary. Thus, it affects the trivial solutions to equations (3) too.
Due to the characteristics of the function Y;, the uniform states are addressed
only for the range of the variable X values, where Z > 0 (i.e., where the solutions
to the system have physical sense). In the case that the polymer is not sensitive to
the redistribution of stresses (o ~0), the curve Y; varies: -00 < ¥1(X) <o (Fig.1).
Since curve Y5 is a descending hyperbola, the uniform state, corresponding to the
thermodynamic branch, exists for a wide range of system parameters.
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If the material is sensitive to stresses and under loading, the situation can
change qualitatively (Fig.2). For a ~2.10%, the ¥; curve changes its direction. An
additional uniform state appears. An increase of the sensitivity to stresses leads
to mutual approach of trivial solutions (Fig.2) and to their disappearance.

According to Kerner and Osipov (6), the unstable uniform state corresponds
to the trivial solution (the crossing point) in the area, where
sign{ﬁj = sign[ d? ) @)
ax 170.4
and visa verse. Thus, if there are no stresses in the system, in a wide range of
parameters there is one stable uniform state. If the system is sensitive to stresses,

then a pair of solutions can exist (stable and unstable uniform states) or there is
no trivial solution at all.

Obviously, there are two thresholds of the system constitutive parameters.
Below the first level only uniform distributions form. Above the second level the
uniform state can not appear (there is no crossing point): more complex distribu-
tion (dissipative structure) will develop. If the constitutive parameters are
between the two levels, both - uniform states and dissipative structures can form.

DISSIPATIVE STRUCTURE OF DEGRADATION

In order to show the possibility of the stationary spatial distributions for the sys-

tem (3), an area of amorphous zone of a length ,}D% <<l << 6. is considered.
3

Then the distribution of solved oxygen is almost constant (6) and the system (4)
for steady state case will be reduced to the form:
g’X Jdu X ky — kX
e e ), S aX) -k, X* +2k, XY 2—"—=0; (8.1
Dy G+ gx = Dx gy thexplaX) =k XV ex "% GD

JCr@ -1 -k xm =0 ®2)

The first equation formally describes the motion of a particle with coordinate X
and time x in potential U. The trajectory of the particle depends on the oxygen
mass fraction Y=const. The latter is determined from the condition of solvability
of the system (3), i.e., equation (8.2). The potential U for various values of Y is
illustrated in Fig.3. It represents a potential well. The only solution stable in time
(6) is the singular one, with a trajectory passing through the maximum. By ap-
proaching the maximum the change in distribution vanish, therefore the solution
to system (8) has the shape of a peak on a uniform distribution background
(Fig.4).
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USED SYMBOLS

k, o = constants describing reaction rate in chain auto-oxidation scheme;

o = factor for the initiation stage dependence on alkylradical mass fraction;
X = mass fraction of free radicals [ R*] per unit volume;

Y  =mass fraction of oxygen solved in polymer [0, ] per unit volume;

Z = mass fraction of peroxy radicals [ RO;];

Y = stable mass fraction of the solved oxygen at the material surface;

3 = distance from the material surface to the amorphous layer (m);

Dy, Dy = diffusion factors for free radicals and oxygen (m2/s);

f(X....), F (X,...) = functions of sources, which model internal irreversible pro-
cesses (reactions); algebraic part of right side in equations (2.1) and (2.2)
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Fig.1. The mutual location of curves Y;
and Y, for parameter set (6).
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Fig.3. The U potential for two different
levels of oxygen mass fraction Y.
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Fig.2. The shape of curve Y for dif-
ferent values of the sensitivity factor.
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Fig.4. Profile of stable steady state
distribution of free radicals.

1850



