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HYBRID FRACTURE/DAMAGE APPROACH

J.C.W. van Vroonhoven! and J.B.A.M. Horsten?

A new approach for the analysis of dynamic crack propagation
1s proposed. Characteristic features of fracture mechanics and
damage mechanics are combined In a finite-element method.
Elements with quarter-point nodes are used at the crack tip to
describe the stress singularity. The crack itself is replaced by a
zone of softening material, where continuum damage mechanics
is applied. Contrary to many finite-element applications of
damage mechanics, this hybrid approach does not suffer from
mesh sensitivity or damage localisation. The calculated crack
patterns are independent of the element size and the element
orientation. This method has been applied to both 2D and
3D problems of mixed-mode fracture. Good agreement with
experiments and results from the literature has been obtained.

INTRODUCTION

Both fracture mechanics and continuum damage mechanics possess certain dis-
advantages in finite-element applications. Since numerical methods based on
fracture mechanics require frequent adaptations of the finite-element mesh and
use moving-element techniques, these methods will need much computing time.
On the other hand, methods based on damage mechanics suffer from sensitivity
with respect to the element division and from damage localisation. Because of
these complications, a combination of fracture and damage mechanics within
the context of the finite-element method is investigated. This has resulted in
a hybrid fracture/damage approach (1, 2] which combines the accuracy of the
singular crack-tip elements in fracture mechanics and the flexibility of crack
representation in continuum damage mechanics. It is then expected that the
disadvantages of both theories are eliminated, while their specific benefits are
retained.
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BASIC CONCEPTS

We focus our attention on thin plate-like structures and start with a division of
the elastic body into finite elements with one element over the thickness. The
crack is taken uniform over the thickness with the crack front being a straight
line and with the crack surfaces being perpendicular to the middle plane of
the plate. Generally, the crack may propagate at different speeds in the upper
and lower surfaces of the plate or in different directions. It is assumed that
these effects do not occur and that the crack front remains straight.

We use the 3D eight-node (in 2D: four-node) elements with incompatible
modes (see Hughes [3]), which have adjusted stiffness and give a far better
performance in bending deformation than the standard linear elements. In the
vicinity of the crack front, fracture mechanics is employed and extra mid-side
nodes are added. We replace the original element containing the crack front by
four collapsed prismatic (in 2D: triangular) elements with the side nodes shifted
to the quarter points (see Barsoum [4]). This ensures the accurate calculation
of the singular stresses. Since the displacements in the crack-tip elements are
interpolated by quadratic shape functions, we apply variable-node elements
[3] as a transition from the singular to the linear elements. The combination
of the four crack-tip elements and the eight surrounding transitional elements
is called the “super-element” which translates with the moving crack front.
A two-dimensional projection of this structure is shown in Fig. 1. The extra
nodes (including the corner nodes of the crack-tip elements) are eliminated at
the super-element level by means of static condensation [3].

Continuum damage mechanics (see Chaboche [5] and Lemaitre [6]) is used
to describe the “tail” of the crack. The stress-strain relations are written as

o = 1-D)Ee, (1)

where o and ¢ are the stress and strain tensors and E is the Young’s modulus
of the undamaged material. The damage parameter D is chosen equal to 0.999
which results in a reduction of the effective Young’s modulus by a factor 1000,
either isotropically or only perpendicular to the crack surfaces (see Fig. 1).
This “smeared” crack concept has more flexibility in finite-element applications
than fracture-mechanics procedures which require element splitting.

DYNAMICS

The discretisation of the elastic body into finite elements leads to a differential
equation for the global displacement vector U as function of time ¢, viz.

M- U+ K-U=F, (2)

where a superposed dot is the time derivative, M and K are the global mass
and stiffness matrices, and F is the right-hand side vector of prescribed forces.
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The differential equation is solved numerically at discrete times ¢, = n At
(withn=0,1.2, .. .) by an explicit method based on central differences. The
second-order derivative is approximated by

U(tn+1) - 2U(tn) * U(tn—l)
(At)? ' 3

The truncation error is of the order O((At)?) for time steps At — 0, so that
the central-difference method is second-order accurate [3]. At each time step,
we calculate the acceleration vector ﬁ(tn) from the equation (2) and, next,
the displacement vector U(t,11) from (3).

The solution of (2) can be made more efficient when we apply a so-called
‘lumping” technique (see Hughes [3]). The mass matrix M is replaced by the
diagonal matrix M* which contains the row sums and is defined by

U(tn) =

* ZkMik7 leZ_],
My = { 0, otherwise. (4)

The errors introduced by the lumping of the mass matrix cancel the errors from
the time discretisation [3]. In addition, the solution of (2) no longer requires
matrix inversion. Thus, the combination of the central-difference method with
the lumping technique provides an accurate and efficient time-step algorithm.

CRACK PROPAGATION

The crack-propagation criterion is based on the J-integrals. The integration
contour C' is chosen inside the super-element around the crack tip as illustrated
in Fig. 1 by a thick solid line. For dynamic crack propagation we have

+h/2
Jp = /_h/2 /(; [(W+T)nk — a,«jnju,-,k]dsdz, (5)
with & = 1,2 and summation over i,J = x,v, z, where u; are the displacements,
n; the components of the outward normal to C, h the plate thickness, and
W = loije; and T = 3pU;1; the elastic and kinetic energy densities.

The direction of crack propagation is determined by the direction of the
J-integral vector, i.e. by tanfp = J,/J;. The speed of crack propagation is set
equal to the Rayleigh wave speed cg. This is an acceptable estimate, because
the exact speed will not differ much from cg in cases of rapid fracture. As a
result, the crack increment has length cp At, while its direction is given by the
angle fp. Crack arrest occurs when J1 becomes negative.

Because of the crack propagation, the mass and stiffness matrices M and
K in equation (2) will depend on time t. These matrices are kept constant
during one time step and are adapted to the new super-element configuration
after each crack increment.

977



ECF 11 - MECHANISMS AND MECHANICS OF DAMAGE AND FAILURE

APPLICATIONS

We begin with a study of possible dependences of the calculated crack paths on
the element division. A square plate loaded by uniform tensile forces or bending
moments is divided into a finite-element mesh with slanted orientation. The
crack paths are shown in Fig. 2 and are always accurate within one element
from the theoretical (straight) path.

The second application concerns curvilinear crack growth in a single-edge
notched beam (see [2] and Fig. 3). The crack starts at the bottom edge of the
beam and must end at the upper edge to the right of Fy (see Schlangen 7.
The crack path of Fig. 3 clearly satisfies this requirement.

Finally, we study crack propagation in three dimensions: the torsion of a
hollow cylindrical pipe (see [2] and Fig. 4). A crack is initiated in the middle
cross section of the pipe and propagates in two symmetric directions. When
one half of the cross section has fractured, we observe some deviations in the
crack paths and the pipe reaches the point of final collapse.

CONCLUSIONS

The hybrid fracture/damage approach combines the accuracy of the singular
elements in fracture mechanics and the flexibility of crack representation in
damage mechanics. An effective tool has been established for the analysis
of crack propagation, within the context of the finite-element method. The
necessary element-mesh adaptations during crack growth are avoided, while
the inaccuracies at the point of damage increase are eliminated by the use of
crack-tip elements. Dependences of the crack patterns on the element size or
the element orientation have not been found. Applications to several 2D and
3D problems reveal good results for the crack-propagation direction.
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Figure 1: Configuration of the super-element and surrounding elements.
Damage is displayed by dashed lines, crack path by x, original nodes
by e, and extra nodes by o. Thick line indicates contour for J-integral.

(a) slope 0.10 16x16 elements (b) slope 0.20 16x16 elements
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Figure 2: Crack paths in uniformly loaded square plate for various
element. divisions. Prospective end point of crack is indicated by .
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Figure 3: Crack path in single-edge notched beam in mixed-mode
loading. Crack is initiated at bottom edge of beam.

Figure 4: Crack pattern in hollow cylindrical pipe loaded
by torsional moments at both end surfaces.
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