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BOUNDARY INTEGRO-DIFFERENTIAL EQUATIONS FOR ANISOTROPIC
CRACK PROBLEMS

A.LE VAN* and J. ROYER*

The boundary formulation for crack problems in a fully
anisotropic medium is investigated. First, the so-called limit
theorems describing the limit behaviour of the fundamental
solution near a closed or open surface are given. These theorems
are generalization of the well-known ones in the isotropic case.
Next, the boundary integro-differential equations are derived for
the problem of anisotropic cracked bodies. The formulation
includes both the cases of the infinite body (with an embedded
crack) and a finite body with an embedded or surface crack.
Throughout the paper, emphasis is made on the mathematical
conditions for the results to be valid.

INTRODUCTION

The boundary integral equation method for an anisotropic elastic three-dimensional
continuum was first investigated by Vogel and Rizzo (1), followed by an efficient
numerical implementation proposed by Wilson and Cruse (2). In the field of
anisotropic fracture mechanics, the boundary formulation was discussed in the
pioneering works of Sladek and Sladek (3), Balas et al (4).

This paper deals with the boundary formulation for crack problems in a fully
anisotropic medium as a continuation of the previous works. First, the so-called
limit theorems describing the limit behaviour of the fundamental solution near a
closed or open surface are given. These results are generalization of the well-
known ones in the isotropic case. Their proofs require a minimum amount of basic
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properties only and not the knowledge of the closed form of the fundamental
solution. Next, the boundary integral equations are derived for both the cases of the
infinite body (with an embedded crack) and a finite body with an embedded or
surface crack.

THE LIMIT THEOREMS

The purpose of this section is to present some results about the limit behaviour of
the fundamental solution when the load point x approaches a point Yo belonging to
a given surface S. Consider an isotropic body characterized by the fourth-order
elastic tensor C whose components written in a fixed base (e;e,e3) verify the usual
symmetries : Cijk. =Cjik ¢ =Cijox=Ck 2 ij- Let us introduce the following definition
where the summation convention is implied over repeated subscripts which all have
the range (1,2,3).

Definition

- Given a unit vector ey, of the base (e1e2€3), the fundamental solution related to €m
and denoted by U(ep,x,y) is the solution of the partial differential equation in the
infinite three-dimensional space & :

div [C: grad Ue,.x.y)] +8(y — x)e,, =0 where 8(y-x) is the Dirac function.

- The corresponding stress tensor is defined as :

Z(e, . Xy) = t[‘,(cm‘x,y)(y,ny = ej) ® e = C: gradU(em,x,y)

where the tensor product a®b is defined by (a® b)ij=ajbj. The differentiation is
performed with respect to variable y and tU(em_x‘y)(y,ny) denotes the stress vector at
point y with respect to normal ny and corresponding to the displacement field
U(em,x,y).

- Now the fundamental displacement tensor is defined by :
Eixy) =Uenx.y) ®e,, ie. Ejix,y) = Uilejx,y)

- This, in turn, gives rise to the third-order tensor of the fundamental stress :
OE
DOy) = Zemxy) @ ep ie. Dip(xy) =Z(epxy) = Ciquiyl(x,y)
q
- Eventually, the Kupraze tensor is defined by (See reference 5) :

oE
s _ pk
T(x,y,ny) = tU(Cm'x_y)(y,ny) ®e, ,ie. T-Lk(x,y,ny) = Ciqunj(y)——ayq x,y)
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We have : Ty (x,y,ny) = Zij(ek,x,y)nj(y) =Djx,y)ni(y) -

Conversely : Zij(ek,x,y) =Dj(xy) =Tyxy.ny=e)).

As tensors & and T are functions of D, any equation in the sequel can be
expressed in terms of D alone. In practice however, the simultaneous use of
notations T and D proves to be more convenient.

The integral representation of the fundamental solution U(em,x,y) for an
isotropic elastic medium was given in (1) by decomposing the Dirac function into
plane waves. Although the closed form solution is not available, various basic
properties on the asymptotic behaviour of tensors 0E/dy, T and D can be deduced
from the integral representation, which make it possible to prove the so-called limit
theorems below.

Before stating the limit theorems, let us first agree about notations for the
orientation of a surface. Of course, any surface S (closed or open) considered here
is assumed to be orientable. This implies that, for any point yoe S\JS, we can
locally define two sides of S which we label side + and side -, all the normals to S
being directed from side - to side +.

Theorem 1

Let S be a surface (closed or open) and u a vector field defined on S. If:

i) S is a Lyapunov surface : Se CLo, O<o<1

ii) u satisfies the Holder condition on S : ue COB(S)

, then :

Vy € S, 1im+ fs T(x,y,ny)u(y) dyS =% é—u(yo) +pv fs T(yo,y,ny)u(y) dyS
xoyT

where by x—y* are meant the limits as x approaches yo, x belonging to the side +

and the side - of S, respectively. The symbol pv denotes a Cauchy principal value

integral.

The following theorem requires a somewhat stronger condition for the function u.
Theorem 2

Assuming that :

i) Se CL.o, O<a<l

i) ue CLB(S) 0<P<l, i.e. all the derivatives of u belong to the class CO-B(S)

, we have the property of continuity across the boundary :
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Vye€ S, xl_i)n;i fs fR(By,x,y,ny)U(y) d,S.n  =pv fs R(ay,yo,y,ny)ll(y) dSn
where the symbol R, represents the differential operator defined as (4):
(qu(ay,x,y,ny)u(}’))ij = Rijm(ay,x,}’,ny)um(y) = Cijk?Dmnk(X’y)'an (ay’ny)um(y)

D s (ay,ny) is the tangential differential operator defined as :

d )
Dy @yn) = “n(y)aT,, - ne(y)a—yn

Here the hypothesis for the displacement, ue CLB(S), is stronger than that in
theorem 1 because of the derivatives involved by the differential operator R .

The above relations, established in the anisotropic case, constitute the
generalization of well-known results in isotropy where they can be directly verified
using the closed form expressions available in (4) for T, D and R..

BOUNDARY INTEGRO-DIFERENTIAL EQUATION (BIDE)

This section gives the boundary integro-diferential equation (BIDE) for the problem
of anisotropic cracked bodies. Two cases are considered : the infinite body (with an
embedded crack) and a finite body with an embedded or surface crack.

Consider a linear elastic anisotropic, finite or infinite, body Q containing a
crack. If the body is finite, its outer boundary is denoted SB and the crack can be
either an embedded one or a surface one. The crack surface Scr is made up of two
faces S¢r* and S¢p- which coincide in the undeformed state. To each point ye S,
correspond two points y* and y~ belonging respectively to S¢,* and Scr™. The
respective normal vectors are opposite, i.e. ny*=ny-, ny~ being directed from Serto
Scr*, thus defined everywhere as outward with respect to the body considered, in
accordance with the usual convention. In the sequel, all the equations will be
written using S¢.”, so that normal ny is taken as the reference one.

Theorem 3

Consider the infinite body Q containing the crack Scr=ScrUSct. If :

i) the regularity conditions are fulfilled su(y)=o(D), o(y)=o(1/r) i.e. t(y,ny)=o(1/r)
when r=lly-x|l - =, X being a fixed point; and f(y)=0O(r ‘2‘5) whenr — e, 0<8<1

i)S; e C'™ 0<as1
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iii) the displacement jump through the crack Au(y)=u(y*)-u(y-) verifies :
Aue CI'B(S;,) ,0 <B< 1. (From hypotheses (ii) and (iii), it follows that the sum of

the stress vectors on the crack faces Zt(y)=t(y*,ny*)+t(y-,ny") verifies :
Xt = -[C:(gradAu)].ny- e COP(S¢r), 0<P's1)

, then the boundary integro-differential equation writes :

1 - - =
Vo€ S 3l 0any) — (hni] = * [ DOYIE)&,V. 5,

#pv [ (D) + R@y.yoynduty) ) dyS. nyg

cr
where the asterisk denotes an improper integral.

If the crack is loaded symmetrically, i.e. t(y*,ny*)=-t(y",ny"), then Zt(y)=0.
If the loads t*+ and t- are specified otherwise, the solution of the above BIDE gives
the displacement jump Au, and then u* and u- using the integral representation of
the displacement. Conversely, if Au is prescribed, the BIDE does not allow to

obtain t+ and t- separately, unless an additional information is supplied, e.g. t*=-t.

Theorem 4

Consider a finite body Q with outer boundary Sg, containing an embedded or
surface crack S¢r. Assuming that :
) §o & C9.8,e O 02wt 1

i) Aue C¥(S_, ), ue C'(Sp)

, we have the following system of boundary integr(o-differenti)al equations :
T

Ve Sp, [ [EGONZOIT (703 ny)au() 1S +

cr

* f o 1 E(yo)t5:ny)-T  (voy, ny[u(y)-ulyo)] }d,S+ *fQ E(yoy)f(y)d, V=0
B
and :

1 - - -
VYoE Ser ,E[I(yo,nyo)—t(y;n;o)]=js D,y )ty:ny)=RA9Y,¥ory-ny)u(y) }dyS.ny,
B

+pvfs_ (DY) ZHY)+R By,y y:ny)Au(y) }dyS.ny, + * fQ D(y,y)f(y) dyV. ny,

cr
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In the case of a surface crack, Sp must be replaced by Sg\L throughout the above
equation system, where L=0S; NS is referred to as the surface line.

In the case of a surface crack, it has been assumed that ue C1(Sg\L), not
ue C1(Sp). Indeed, the surface line L corresponding to an incision in the boundary
SB, gives rise to a displacement discontinuity on Sp along L and makes the
hypothesis ue C1(Sp) impossible. The theorem 4 cannot be proved by considering
SBU S¢r as a single closed surface. The crack geometry clearly indicates that ,
contrary to S¢r, Scr=ScrtU S¢r- cannot be assumed to belong to the class C1.o,

The solution of the above system give (u,t) on S and (Au,Xt) on Scr. The
coupling between these equations accounts for the interaction between the outer

boundary and the crack. In the case of a surface crack, the system provides no
equations along the surface line, since yo€ L. However, the lacking equations are
compensated for by expressing the displacement compatibility at the surface line.
With obvious notations, we can write at every pointon L :

Au(y,e L) +u(yge L7) —u(yle L*) =0
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