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APPLICATION OF T*-INTEGRAL TO THE DUCTILE CRACK
PROPAGATION ANALYSIS IN THE MEDIA WITH VOIDS

V.1.Kostylev* and B.Z.Margolin®

A computation analysis of crack growth by ductile
fracture in the conditions of quasi-static and dynamic
loading, based on the T*-integral application, is
represented. It has been shown that for the media without
voids crack growth —may be described by condition
T*(AL)=const=Jic, if T*y-integral is calculated on small
integration path moving with the crack tip. To analyse of
crack growth in media with voids a new T*s-integral with
special strip path has been proposed.

INTRODUCTION

To describe crack growth Atluri (1), Brust et al. (2) used the parameter T*:

T* = lim [[(U+K)n, _ 2% 4T
A—)OFA %, :

The computational and experimental works (1), (2) performed on the
compact tension specimens and the edge crack specimens resulted in the
following. For the stationary crack under monotonic loading the parameters
T* and J-integral (computed by the external path) coincide. As a crack is
propagating the J-integral increases continuously, whereas T* grows up to a
certain constant level T*eonst and does not change with the further increase of
AL. Note that for different materials and specimens the value of T*const varies
in the range of (2,5-10)Jic.
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DUCTILE CRACK GROWTH

To analyse the applicability of T* for the description of crack propagation
under monotonic loading some computations was performed by Margolin
and Kostylev (3). By means of finite element method the elastic-plastic
problem on the crack propagation under the plane strain conditions was
solved. We used specimens with the sizes: S=400 mm, 2W=200 mm,
2L=100 mm and properties of material corresponding to the Cr-Mo-V
steel: Young’s modulus E=2-105 MPa, Poisson’s ratio v=0.3, Jic=162 N/mm.
The nonlinear stress vs strain curve was described by dependence
Geq=520+596(gPeq)?*** MPa. The numerical simulation of the ductile crack
growth was conducted by providing the self-similarity of the local stress-
strain state (SSS) near its tip by means of the appropriate external load
selection. The computation of T* was performed by two types of paths
(Fig.1a,b) with A=A, providing the convergence of integrals: T*sa0-s=
=T*,_so, where 8<A,. The results obtained (Fig.lc) allow to conclude that
T* (AL)=const=Jic and hence parameter T*, uniquely controls SSS at the tip
of the moving crack; to describe the SSS by means of T*,, the dependence
T*,(AL) should be used. It is evident that the rise of T*; with the increase
of AL is related to the material unloading occuring behind the moving
crack tip. The unique controlling of the local SSS by the parameter T*; at
the crack propagation is caused by the fact that in the small path ', (Fig.1a)
enveloping only the moving crack tip, mainly the monotonic loading occurs
whereas the unloading is practically absent.

It is known that the application of Jr-approach is based on Jr-curves
invariance to the type of the loading. At the same time, the variability of
experimental data leaves the question of Jr-curves invariance open. Using
T*-integral and its property: T* (AL)=const, consider the behaviour of
Jr-curves under the stable crack growth in the different specimens
(center-cracked under tension, single edge notch under tension, three-point
bend). J-integral is computed on the integration path passing along the
external specimen boundary. Fig.2 shows that the dependences J(AL)
obtained for different loading schemes differ essentially, the maximum
difference reaching 30% with AL=3mm. Thus, the application of Jr-curve
obtained for any specimens may lead to considerable errors in the estimate
of the stable crack growth for an arbitrary geometry structures.

The dynamic crack growth may be caused both by the unstable
crack growth and its growth under the highspeed loading of the structure.
It is evident that in the both cases the algorithm of the crack growth
computation is the same. The study of the behaviour of the parameter T*

at dynamic loading showed that dependences T*(AL) have the same
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peculiarities that occur at quasi-static loading. T*, behaves most steadily
that makes it useful for the numerical simulation of the dynamically growing
crack. the rate of the crack growth v being determined from
T* (AL)=const=Jic. Since T*, is the function of v, this non-linear equation
is solved only by the iteration method.

DUCTILE CRACK PROPAGATION IN MEDIA WITH VOIDS

It should be noted that the correct application of T*,-integral is possible in
case when material loosenning owing to void evolution under plastic
deformation may be neglected. Ductile crack propagation is known to be
mainly caused by void nucleation, growth and coalescence that results
in the significant loosenning of material. In these cases T*,-integral
application is very problematical because of the followings. Material
loosenning depending on local stress triaxiality and plastic strain appears
to be extremely heterogeneous near the crack tip. Therefore different regions
near the crack tip are deformed according to different stress-strain curves
Geq(€cq). Then parameter U=lojde; depends not only on g but on
coordinates r and 0, i.e. U is not stress and strain potential. Hence, T*-
integral becomes non-invarient to integration path. The latter leads to
absence of the unique relation between T*,-integral and local SSS.

The following conclusions may be drawn according to studies
Margolin and Kostylev (3), Rice and Rosengren (4), McMeeking (5), Rice
and Tracey (6). From reference (3)-(5) for elastic-plastic media without voids
under loading on I-mode the stress constraint Go/Geq on the line of the
crack extent (0=0) is a function of equivalent plastic strain ePeq only and
does not depend on coordinate r, i.e. GolGeq=f(EPeq). Void nucleation may be
described equation from reference 3):

p:po+pf[l-exp(-Ar(speq-so))] ......................................... (N

where A, - material constant. Void growth under plastic deformation may be
described by equation from reference (6):

AR/R=0.286Xp(1,5G6/Geq)dEPequ.rrrrrrrsssssrssssssssssssssssssee @

So. it may be considered that on the line of the crack extent total area of
voids Sy are uniquely determined by €Peq value, i.e. Sy=fi(€Peq). For media with
voids it may be written by using true stress 6%=0i/(1-Sv): O'eg=F2(EPeq) and
Geq=F2(e7eq)(1-Sv). Taking into account that on the line of the crack extent
Sy=fi(ePeq) We have ccq=fg(spcq)[l—fl(ePeq)]=f3(ach). Thus, on this line there
exists the unique dependence Geq=f3(gPeq) being invarient to coordinates, i.e.
parameter U=loyde; is potential for g and cj. Consequently, T*-integral
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controls SSS uniquely in the region located near the line of the crack extent
if integration is performed on path stretching along this line. Define this
path as shown in Fig.3, i.e. as small narrow path stretching along the line of
the crack extent and moving with the crack tip. Name such path by strip

path and denote it as I's and T*-integral as T*s-integral.

To verify the stated propositions numerical analysis of SSS near the
crack tip was performed as applied to compact specimen (Fig.3) with the
following sizes: W=100 mm, S=120 mm, L=40 mm. According to
experimental data the following values of parameters for eqn (1) were taken:
Po=20 mm-=2, £,=0.07, p=20408 mm2, A,=2. The dependences of equivalent
stress on equivalent plastic strain Geq(€Peq) in various points near the crack
tip are shown in Fig.3. Analysis of these results permits to conclude that for
points located on the line of the crack extent there exists the unique
dependence Geq(gPeq), but for points located on the parallel line there not
exists such unique dependence. Evidently, T*-integral calculated on
integration paths passing through the regions in which the unique
dependence Geq(gPeq) does not exist has different values. So, T*-integral
calculated on path 'y depends on the path size A in the regions of damaged
materials and is invarient only to integration paths passing through the
regions of non-damaged materials. At the same time the values of T*s-
integral does not practically depend on A (Fig.4) if T*s-integral is calculated
on Is path. Hence, T*s-integral may be used to predict the crack start in
media with voids.

After the crack start T*s-integral calculated on I's path does not
practically vary if the self-similarity for local SSS is provided. Hence, to
simulate crack propagation on ductile failure mechanism with regard for
material losenning condition T*s(AL)=const=Jic must be fulfiled.

CONCLUSIONS

1. It has been shown that crack propagation at quasi-static and
dynamic loading may be described by condition T*(AL)=const=Jic, if T*-
integral is calculated on small integration path moving with the crack tip.

2. Jr-curves has been shown to depend on loading scheme and type
of specimen.

3. A new T*;s -integral with special strip path of integration has
been proposed. It permits to analyse start and growth of crack in material
with  significant  loosenning caused by void nicleation and growth.
Condition of stable crack propagation in such material may be written

as T*s(AL)=const=Jc.
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SYMBOLS USED
€ij, €Peq s €o = strain: tensor, equivalent plastic, voids nucleation (%)
I = integration path enveloping the crack tip
J, T*, Jic =J, T* integrals and critical value of J-integral (N/mm)
K, U = the kinetic and strain energy density (N/mm?)
L, AL = crack length and its increment (mm)
r, 0 = polar coordinates (mm) and (rad)
R = void radius (um)
P, Pos, Pr = concentration: voids, initial voids, inclusion (mm?)

Gij, Go, Ocq, O' = stresses: tensor, hydrostatic, equivalent and true (MPa)

Sv = the relative void area (void area per the unit area)
ti = projection of the force vector on the contour T’ (N/mm?)
u; = displacement vector components (mm)
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Figure 1. Various integration path/a
and T*, J-integrals vs AL /c/.
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,b/ Figure 2. T*, J-integrals vs AL
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Figure 3. Geq Vs €Peq for CT specimen
with regard for void evolution.
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Figure 4. T* and T*-integrals
vs contour Sizes .



