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AWEIGHTFUNCTION FORSTRESS INTENSITY FACTOREVALUATION
IN STEEL BRIDGES ORTHOTROPIC DECKS

M. Beghini(°), L. Bertini(°), V. Fontanari(*)

The paper is focused on the evaluation of the Weight Function (WF)
for an orthotropic deck, employed as structural element for building
welded steel bridges. To this end, a special technique is employed,
which allows to obtain the WF with a reduced computational effort.
The comparison of Stress Intensity Factor values obtained by the
Finite Element method and calculated by the WF showed a fairly
good agreement, both under axial and pure bending loading.

INTRODUCTION

Welded steel bridges, whose main load carrying elements are the “orthotropic decks”
(Fig. 1), are widely employed for roads and railway applications, due to their
attractive economical and durability characteristics.

The rather large dimensions of the decks’ elements, coupled with relatively low
stress levels, suggests that a significant part of the structure fatigue life is likely to be
expended in the stable propagation of cracks. Therefore, it appears quite attractive to
set-up analysis tools capable of predicting the growth of typical deck’s cracks under
cyclic loading, also taking account the effects of residual stress fields, which are likely
to be produced by the manufacturing cycle.

Recent analyses (Beghini and Bertini (1), Beghini et al. (2)) demonstrated that
the Weight Function (WF) approach is a quite effective method for predicting crack
growth under general fatigue loading, also including the effect of residual stresses.
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Therefore, a technique developed by the authors (Beghini et al. (3-4)), was employed
to derive the WF for the orthotropic deck, assuming a crack emanating from the lower
fibre and growing symmetrically (Fig. 1).

THEORY

The Stress Intensity Factor (SIF), K, for a body carrying an embedded crack under
symmetric loading (Fig. 1) can be obtained as:

a
K;= J.G,,(x)-h(x,a)dx
0
where o, (x) isthe nominal stress and h(x, a) is the WF. The WF fora generic geometry
is usually very complex to be determined, requiring a lot of accurate SIF evaluations
by numerical (e.g. Finite Element, FE) methods.

ey

The method proposed in (3-4) is based on the observation that, given a crack of
length b<a, the following (fundamental) relationship holds:

(]'6 (x,b)-h(x,a)~dx = C]‘c n(x)-h(x,a)dx 2)
b 0

where o(x,b) is the stress acting in the body carrying the crack of length b. The WF
for the embedded crack is then assumed (4) to be given by the following double power
expansion :

@j-r-2) @j-r-2)

Zléaij.(%)i-%'(l_x) 2p +(l+z) 2p 3)

[ 2
Kx,a)= . |—=F"
(x.) \n-W | a
where a.;; are non-dimensional coefficients, some of which can be fixed in order to
satisfy the known asymptotic properties of the WF at the crack tip (4), n and m define

the number of terms and p, equal to 1 or 2, selects the exponents employed.

Assuming an approximate expression for o(x,b), given by the asymptotic
(singular) term nearby the crack tip and by a FE analysis at some distance from crack
tip (3), and substituting h(x,a) from Eqn. 3 into Eqn. 2 an equation containing the o;;
as unknowns is obtained for each crack length b<a. Coupling these equations witﬂ
Eqn. 1, written fora number of cracks for which the SIF is known, an overdetermined
linear system having the o j as unknowns is obtained, which can be solved by a best
fit technique (e.g. the Normal Equation Method).

The main advantage of the present method is that it only require a few SIF value
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and a very rough approximation of the stress distribution in the cracked body, as can
be obtained by coarse FE models.

FINITE ELEMENT MODEL AND ANALYSIS

A FE model (Fig. 2) was developed, making use of the ANSYS 5.0 Code, in order to
evaluate the values of K for several crack lengths a and for two loading conditions
(i.e. axial loading and pure bending). Quarter point elements were employed at the
crack tip and the SIF was evaluated by averaging the J-integral calculated over a series
of concentric paths to improve accuracy. The comparison of K ; calculated from the
different paths and by near tip displacement allowed to estimate that the error on the
SIF value was less than 1%.

The WF was determined by using the results of the uniform axial stress analysis
only. Ten K)(a) values, with a ranging between 0 and 0.6/ were employed and a
convergence study showed that assuming #n=4, m=>5 and p=1 a sufficiently accurate
representation of the WF is achieved.

The calculated o;; coefficients are reported in Table 1, while a comparison
between the values of K (a) calculated by the WF and by the FE analysis for the case
of uniform axial loading is reported in Fig. 3. It can be observed that, for a/#<0.6,
there is a fairly good agreement between the two types of data, the maximum
difference being about 3% (usually not exceeding 1%). In the same figure, the SIF for
a Griffith crack of equal length and stress level is also reported. It is worth noting how
the use of this very simple formulation, except for very short cracks, would produce
significant underestimates of K.

The SIF calculated for the pure bending loading were employed for qualifica-
tion purposes, in order to assess the WF accuracy under stress distributions different
from the one employed for its evaluation. The comparison of WF and FE K ,(a) curves
is performed in Fig. 4. It can be observed that, also in this case, the agreement of the
two types of data appears fairly good, errors being contained within 3%. As before.
the SIF for the equivalent Griffith crack underestimates the correct value.

CONCLUSIONS
A numerical technique, based on rather simple Finite Element (FE) analysis was
applied to derive the Weight Functions (WF) for an orthotropic deck, employed as

main structural element in welded steel bridges.

The WF proved to be capable of evaluating the Stress Intensity Factor (SIF) for
a symmetric crack with fairly good accuracy (errors of few percent) both under axial
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and pure bending loading.

These WF could therefore be efficiently employed for the prediction of fatigue

crack growth life of bridges, also taking account of complex stress distributions, such
as those produced by Residual Stress fields.
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SY LS USED

= crack length

= section height

= stress intensity factor (Mode I)
= stress

= nominal stress

= Weight Function

= curvilinear abscissa
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TABLE 1 - Weight Function o coefficients (Eqn. 3).

i 1 2 3 4 5

1.000 350.372 -221.029 -271.063 142.226
0.000 -1643.460 910.196  1473.240 738.968
0.000 3973.870  2079.043  3739.593 1848.398
0.000 3328206  1786.137  3039.762 1508.787
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Figure 2 FE model employed for analysis
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Fig. 3 SIF vs. crack length for the pure tension case
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Fig. 4 SIF vs. crack length for the pure bending case.
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