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A SIMPLE METHOD FOR THE DETERMINATION OF GEOMETRIC
CORRECTION FACTORS IN LINEAR ELASTIC FRACTURE MECHANICS
D.L.Chen*, B.Weiss* and R.Stickler*

A simple method, termed force balance method, is proposed to
calculate geometric correction factors in linear elastic fracture
mechanics. The method is based upon an equilibrium between the
externally applied load/stress and the internal stress existing in the
remaining elastic material ahead of the crack tip. The deduced
geometric correction factors are found to be in good agreement
with the results presented in the literature. In particular, for the
standard CCT specimen, a very simple geometric correction factor

expression has been derived to be Y= 1/ 1-(2a/W)?, where 2a
is the crack length, W is the specimen width. This equation lies just
in-between Irwin’s equation and the equations reported by Koiter,
Tada, Feddersen and Isida.

1. INTRODUCTION

Specimens used in fatigue and fracture tests are of finite dimensions. In order to
calculate stress intensity factors at the crack tip in the finite-width specimens, it is
essential to know geometric correction factors for the corresponding specimen
geometry and loading configurations. Several methods have been proposed to
determine the geometric correction factors, such as finite element method, weight
function methods [1], experimental calibration method [2] etc. The obtained
geometric correction factors have been compiled in several handbooks [e.g., 3-5].
However, in practical problems of the fracture mechanics analysis of engineering
structures, structural geometries and loading configurations are often different and
complicated so that the available stress intensity factor solutions are inadequate.
Therefore, it is necessary to develop some approximate methods which have
sufficient accuracy and are easy to apply.

Recently we have proposed a simple approach for the calculation of
geomeltric correction factors, named "force balance method (FBM)" [6-8], since this
method is simply based on an equilibrium between the externally applied load/stress
and the internal stress existing in the remaining elastic material ahead of the crack tip
along the crack-line. In this paper an improved presentation of the proposed FBM is
introduced by a few examples for center cracked specimens loaded by different
configurations.

2. CONCEPT OF THE FBM
In order to establish the equilibrium equations of forces and/or torques between the
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externally applied load/stress and the internal stress existing in the remaining elastic
material ahead of the crack tip along the crack-line direction, it is necessary to know
the stress distribution in front of the crack tip. Unfortunately, at present it is not
possible to express analytically such a stress distribution for finite-width specimen.
Therefore, the following assumption is made: the stress distribution ahead of the
crack tip for a finite-width plate has a similar form to that for the corresponding
infinite plate, with singular terms being modified by multiplying a magnifying factor.
By use of the equation for calculating the stress intensity factor from the stress
distribution function, one can immediately find that the added magnifying factor is
just the geometric correction factor. This factor can then be determined by means of
the equilibrium conditions of force and torques along the crack-line direction. In the
following two examples shown in Fig.1 are taken to indicate the applicability of the
proposed FBM.

3. EXAMPLES OF GEOMETRIC FACTORS CALCULATED BY THE FBM

3.1 Standard Center Cracked Tension (CCT) Specimen

It is well known from Westergaard’s theory [9] that the stress distribution
(Oyy,in) ahead of the crack tip along the crack-line for an infinite plate,
corresponding to Fig.1(a), with a crack length of 2a loaded by a remote tensile stress
o can exactly be expressed as,

o

Oyt = T———
- J1-(a/x)?

where a is the half-crack length, x is a distance from the center of the crack.

As described above, the stress distribution (oy,) for the finite-width plate
could be expressed as,
_ Yo

o, = |x|>a. @)
? i<(arx)

Using the following formula for the determination of the stress intensity
factor from the stress distribution:

K=1lim \27(x~a)0,,, 3)
Xx—a

one can easily obtain the stress intensity factor expression:
K=Y, 0.na. )
Obviously, the added factor Y, is just the geometric correction factor. From
equation (2) and referring to Fig.2 (the lower half of the specimen is schematically
plotted only), one can determine a mean internal stress in the remaining elastic
material ahead of the crack tip in the crack-line direction,
— 2 wi/2 W+2a
Oy = —, Q)
» W-2a Ja W-2a
where W is the specimen width. It can be seen from Fig.2 that. th@: externally applied
stress is solely carried by the internal stress in the elastic material in front of the crack
tip, i.e., the following force balance equation holds true,

5,y (W—2a)=cW. ©

|x|>a, (D

0,y dx=Y,0
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Inserting equation (5) into equation (6) one obtains a simple geometric
correction factor formula for the standard CCT specimen:
1

Y, =—————. ()
J1-Q2a/w)

3.2 Center Cracked Specimen Loaded niformly Distributed Stresses Acting 0
the Central Portion of Crack

For the case of an infinite plate corresponding to Fig.1(b), loaded by
uniformly distributed stresses acting on the central portion of crack, the stress
distribution ahead of the crack tip in the crack-line direction is given below [4],

- _ 2
o'y»inf:—z—o—-{ sin_(bia) —tan—l[ L-{afz)_ ]} |x>a. (8)

T ;}1—(a/x)2 (alb)* -1

Similarly, for the finite-width plate (Fig.3, also only the lower half of the
specimen is schematically plotted), the stress distribution becomes:

-1 _ 2
<A BILOTE) ,1_(“_’231 W>a, O
T 1—(a/x)2 (a/b)” -1

where a geometric correction factor Y}, is added to the singular term of the stress
distribution. Substituting equation (9) into equation (3) yields

e |
K=Ybo«/—_ﬂa—zﬂl—”(—b/i). (10)

It should be pointed out that the magnifying factor could be added to either
the singular term only or to the whole expression of the stress distribution, which
does not have much effect on the real situation close to the crack tip and on the stress
intensity factor expression. However, it has been indicated by means of finite
element calculations that the addition of the geometric correction factor to the singular
term appears more reasonable than that to the whole expression [10]. With reference
to to Fig.3 and from equation (9), the average internal stress ( Eyy) can be derived to

be,
— 40 7 2. _1(b)
G =—————YA(W/2)"—a"sin | — |+
» n(W—2a){ by(Wi2) —a a
. 11
al fwi2=a® | W 1-(2a/ W)
btan A |5 tan —_—
a“—b 2 (alb) -1
Substituting equation (11) into the following equilibrium equation:
(W-2a)0,,=2b0, (12)

one can deduce the following geometric correction factor formula:

_ 2 2_ 2
”—b+ﬂtan'1 1-(2al W) (2a/2W) —btan™! _____(W/22) 2a
2 2 (alb) -1 a“=b
(13)

JW12)* —a? sin”!(b/a)

Yb =
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It should be noted that equation (13) corresponds to the stress intensity factor
expressed by equation (10). If the stresses are uniformly distributed over the whole
crack, i.e., a=b in Fig.1(b), then equations (10) and (13) can be simplified as,

K=Y, (a=b)ora, (14)

1

-— (15)
J1-(2a/w)?

As a result, this special case is identical to the case of the standard CCT
specimen (i.e., Fig.1(a)). This is true from the viewpoint of the superposition
principle in fracture mechanics [4, 11].

Y, (a=b)=Ya =

4. COMPARISON WITH THE LITERATURE AND DISCUSSION

In Fig.4 a comparison is presented of the geometric correction factor derived by the
FBM with the literature results [4, 12] for the commonly-used CCT specimen (Y,,)
and for the center cracked specimen loaded by uniformly distributed stresses acting
on the entire crack (Y,(a=b)). It can be seen that our equation lies just in-between the
well-known Irwin’s formula and the equations of others. The good coincidence
indicates the validity of the proposed FBM.

The FBM is applicable not only to the cases of centric crack and symmetric
loading, e.g., currently considered cases, but also to the cases of eccentric crack and
unsymmetric loading when the equilibrium of torques is considered [7,8]. However,
it should be pointed out that although no approximation is made during the
calculations, the assumption concerning the stress distribution in front of the crack
tip for the finite-width plate has been applied. Recent finite element calculations [10]
have indicated that such assumed stress distributions could basically stand for the
situation in the vicinity of crack tip, but they do exhibit some discrepancy close to the
free-boundary of specimens especially for larger crack length. Thus, even though the
geometric correction factors derived for various cases are found to be in good
agreement with those reported in the literature, the proposed FBM should be
considered as a simple approximate approach with sufficient accuracy. This can be
seen from Fig.5, where the relative error of our equation, denoted by “CWS*, to
Isida’s equation expressed as a polynomial of 36 terms up to the 70th power of 2a/W
[12] and to Tada’s equation [4] is plotted. The maximum error of our equation is
14% at 2a/W—1 relative to Tada’s value, and is less than 11% for 2a/W<(.98
relative to Isida’s value. The corresponding error for Irwin’s equation relative to
Tada’s and Isida’s equations is found to be 23% and 19%, respectively. In fact, for
very long crack, i.e., 2a/W—1, the difference between Tada’s and Isida’s equations
themselves becomes also very large. If one considers only the practically-used crack
length range, say, 2a/W<0.7, the error of our equation relative to both Tada’s and
Isida’s equations is less than 6%. Therefore, the simple geometric correction factor
deduced by the FBM should be applicable.
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Figure 1 Examples considered: )

(a) standard CCT specimen, (b) center
cracked specimen loaded by uniformly
distributed stresses acting on the central
portion of crack.

Figure 2 Equilibrium between forces
for the finite-width CCT specimen,
schematic.
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Figure 3 Equilibrium between forces

for a finite-width plate containing a center
crack of length 2a loaded by uniformly
distributed stresses acting on the central
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Figure 5 Relative error of the deduced
geometric correction factor for the CCT
specimen.

portion of crack, schematic.
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Figure 4 Comparison of the deduced geometric correction
factor with those presented in the literature [4, 12].
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