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CRACK GROWTH RESISTANCE SIMULATION IN THE MODIFIED
BOUNDARY LAYER MODEL WITH A DAMAGE MODEL

A.HM. Krom™, R.-W.J. KoersT, and A. Bakker*

Detailed finite element calculations based on the modified Gurson
model were carried out in the boundary layer model to determine
parametric crack growth resistance curves (Jr-curves). These
curves coincide when the J-integral is scaled by element size and
reference stress Gg and the crack growth by element size. So crack
growth resistance curves are self-similar. This is not the case in the
modified boundary layer model. The effect of a negative biaxiality
is to give higher initiation J-values and higher resistance to crack
growth. The effect of a positive biaxiality is opposite but less
pronounced. It is concluded that, in combination with the Gurson
model, the modified boundary layer model is suitable for
investigating geometry effects on crack growth initiation and
resistance.

INTRODUCTION

The damage process in ductile metals which results in cracking involves the
nucleation, growth, and coalescence of voids. For ductile crack growth simulations a
constitutive model is needed that can describe this damage process. The modified
Gurson model, in which the void volume fraction is the most important parameter,
can describe this process. For example, Sun et al. (1) have used the modified
Gurson model to predict load-displacement and crack growth resistance curves.
However, they found that the calculations were dependent on a length parameter
which they related to a micro-structural length.

In the modified Gurson model, nucleation and growth of voids are taken into account
along with the effect of the void volume fraction on the yield surface. The model has
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many parameters which must be determined by experimental and numerical methods.
Whereas the model takes into account the influence of voids, it does not actually
model the voids. When such a damage model is used in the finite element method,
we need an appropriate definition of crack growth. Somehow this will be related to
the element size. In real metals, crack growth corresponds to a micro-structural
length. In many studies the effect of element size is not reported or not quite clear.
We carried out detailed finite element calculations in a geometry independent model
(the boundary layer model) in order to investigate the influence of element size. In
the boundary layer model a cracked body with a plastic zone around the crack tip is
replaced by a semicircular region with boundary conditions corresponding to the
applied values of stress intensity. By modifying the boundary layer model with the
biaxiality parameter (T-stress), the influence of geometry can be investigated.

In this paper we have determined crack growth resistance curves which give the
J-integral as a function of crack growth Aa for different element sizes, and
biaxialities.

THEORY

An elastic-plastic material model that accounts for the nucleation and growth of
microscopic voids in a ductile metal was developed by Gurson (2) on the basis of the
work of Berg (3). The model uses a yield condition for a void-containing material
which is derived on the basis of approximate, rigid-perfectly plastic calculations for
special void geometries. This yield condition is of the form ®(c, om, H)=0, where &
is the average macroscopic Cauchy stress, OM 18 an equivalent tensile flow stress
representing the actual microscopic stress state in the matrix, and f is the current void
volume fraction. In this paper we employ the modified Gurson yield function,

2
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where o‘% = 3/2Sijsij is the macroscopic equivalent stress, and o, =1/30y the mean
stress, with sy = Gjj —1/30y8;; the stress deviator, and with 8;j the Kronecker
delta. The average actual microscopic stress state in the matrix material is represented
by an equivalent flow stress OM. For f *=f and q=1, Eqgn. (1) reduces to the original
Gurson yield function. The additional parameter q was introduced by Tvergaard (4)
to bring predictions at low volume fractions in a closer agreement with cell model
calculations. As discussed by Tvergaard and Needleman (5), the complete loss of
material stress-carrying capacity at ductile fracture due to the coalescence of voids, is
not predicted at a realistic level of the void volume fractions by the Gurson model.
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To overcome this difficulty, they introduced the function f *(f) which takes into
account the coalescence of voids:
f ,forf<f,

£5(f) = e y)
& fc+£“ fc(f—fc),forf>fC 2

F"fc

so below f; the void volume fraction is unchanged and above f, the function is as if
the void volume fraction is higher than in reality. The change of void volume fraction
during an increment of deformation is given by:

f = fgrowth + fnuclcation .................................................................... 3)

where fgmwm is the change in void volume fraction due to growth of existing voids,
and fhycleation the change due to the nucleation of voids. Because of the plastic
incompressibility of the matrix the change in volume is to account for the change in
void volume. Therefore, fgmwth is related to the plastic volume strain rate as follows:

Farowth = (1= F)ERL oot 4)

The faucleation can be stress controlled, strain controlled, or both. As proposed by
Chu and Needleman (6) the nucleation rate can be described by a normal
distribution. We have chosen for a nucleation rate that is controlled by stress, as
follows:

fhucleation = (GM + 3

where fNg is the volume fraction of the void nucleating particles, sg the standard
deviation of the stress over which most of the voids nucleate, op +1/36 a
measure of the maximum stress at the interface.

The modified boundary layer model is used to investigate geometry and loading
effects on near crack tip fields without the need to model the complete geometry. The
origin of the modified boundary layer model is in the small-scale yielding situation.
Infinitely far from the tip of a semi-infinite crack, stresses and strains are controlled
by the elastic singularity: the mode I stress intensity factor Ky. This, however, is
only true when the plastic zone is infinitely small. In the boundary layer model are no
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natural length parameters, the model is geometry independent. Larsson and
Carlsson (7) modified the boundary layer model with the T-stress to account for
geometry and loading effects. As a consequence the formulation becomes geometry
dependent. The modified boundary layer model in terms of stresses is given by:

K1
Gij = _\/E—? fij (9) + T61i81j ................................................................ (6)

where r and 0 are cylindrical co-ordinates with the crack tip as their origin. The
T-stress is related to the stress intensity factor by the biaxiality parameter B:

where a is the crack length. The biaxiality parameter depends on crack length,
geometry, and loading. Generally speaking, B is positive for bend specimens and
negative for tensile specimens.

METHOD

Calculations were done using the finite element program MARC, version K5.2, on a
DEC Alpha workstation. In this program the modified Gurson model is
implemented. A large displacement, finite deformation and updated Lagrange method
were used. The finite elements used were 4-node plane strain isoparametric
quadrilaterals with a constant dilatation correction in order to avoid artificial
constraints. The mesh is of the ‘spider web’ type, see Fig. 1. To model the fields
near the crack tip the elements near the crack are small compared to the elements near
the boundary.

To investigate the effect of element size we used three meshes in which only the size
of the near tip elements is different. With R the radius of the web and L the size of
elements near the crack tip, the sizes of the elements L/R=0.2 10-3, 0.1 103, and
0.05 10-3, respectively. The meshes consist of 778, 950, and 1147 elements,
respectively. A detail near the crack tip of the finest mesh is shown in Fig. 2. Plane
strain displacements on the boundary are prescribed according to Bilby et al (8).

The condition f *=0.9/q (or equivalently f=0.9fF) was used instead of f=1/q in order
to avoid numerical instabilities when f * approaches 1/g. As the void volume fraction
reaches this value in one of the four integrations points, the element stiffness is
reduced to zero (deactivated). Then the element is considered to be cracked and the
crack has grown by an amount of L (undeformed mesh). So contraction of the
element is not taken into account. When the first element ahead of the crack tip is
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deactivated, the crack tip node is not released. Therefore, the element behind the
crack tip is also deactivated. Although the criterion for crack growth is determined
from one of the integration points, the average void volume fraction varied less from
the 90% value at fracture except for the first two cracked elements.

The J-integral is determined by the virtual crack extension method according to
Bakker (9). The J-integral is determined in the second path of elements from the
outer radius.

The material behaviour is given by a uniaxial stress-strain curve:

L] , for esg‘l
E E
£= o 1 S L o A (8)
To} O , for e>&
E \ o, E

where € is the logarithmic strain, o the true stress, E the Young’s modulus, 6, a
reference stress (the uniaxial yield stress), and n the strain-hardening exponent. The
material parameters are E/5,=500, Poisson’s ratio, v=0.3, and n=5. Partly following
the cell model calculations of Koplik and Needleman (10) we used the following
parameters of the Gurson model: q=1.25, f.=0.03, fg=0.15, fNg=0.001, oN=30,,
and sg=0.50,.

RESULTS

In Fig. 3 the stress normal to the ligament, G,,, is shown as a function of the
distance to the (moving) crack tip at different loads. At low loads the crack remains
sharp but due to plasticity and void growth the crack tip blunts. As a consequence,
the high constraint at the crack tip is lost, and the maximum normal stress is limited
and the position of this maximum shifts from the crack tip. After significant crack
growth, the position of the maximum does not change. The maximum normal stress
is approximately the same as found by McMeeking (11) who carried out calculations
in the boundary layer model for a non growing crack. McMeeking found a upturn in
the stress distribution near the crack tip due to strain hardening. This, of course, did
not occur in our calculations due to the softening caused by damage.

Fig. 4 shows the void volume fraction in the ligament. Clearly, the void volume
distribution does not change after crack growth, and that the void fraction
development is restricted to a few elements. Moreover, we observed that the void
growth is confined to the elements along the ligament. Therefore, we could limit the
modified Gurson model to a region near the ligament.
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In Fig. 5 the crack growth resistance curves are shown as a function of element size
for B=0. Because the element size is the only constant length parameter during the
crack growth, the element size is chosen for normalising. In order to have
normalised values, the J-integral is normalised by the reference stress o, and the
element size L, and the crack growth Aa is normalised by the element size L. As a
consequence, the crack growth resistance curves coincide. In fact, this means that the
calculations are converged solutions. Furthermore, the J-integral at initiation scales
directly with the element size. Another point is that the resistance curves are almost
straight except in the beginning. So the slope of the resistance curves depends only
slightly on the element sizes used in these calculations. McMeeking (11) found that
stress distributions in the boundary layer model coincide when scaled by the
J-integral. This means that the stresses are controlled by one parameter: the
J-integral. For this effect, McMeeking introduced the term self-similarity. Here, the
resistance curves are controlled by the element size. Therefore, we may say that the
crack growth resistance curves in the boundary layer model are self-similar.

Fig. 6 shows the crack growth resistance curves for different element sizes and
biaxiality. In the modified boundary layer model the crack growth resistance curves
depend on biaxiality and element size, and therefore do not coincide. Smaller
elements give lower J-integrals at initiation. Thus, the T-stress (Eqn. (7)) is also low
and the effect less pronounced than with larger element sizes. So larger elements
have greater effects on the resistance curves. The effect of B=-1 is to give a higher
J-integral at initiation and a higher slope of the resistance curve. For B=+1 the
resistance curve almost coincides with the curve for B=0 (see Fig. 5). So the effect
of B=+1 is much less pronounced. This effect is similar to the one Bilby et al (8),
found for the stress distribution for a non growing crack in the modified boundary
layer model.

CONCLUSIONS

Using the Gurson model in the finite element method it follows that crack initiation
and growth depend on element size L. It is observed that the J-integral at initiation
(cracking of the first element) scales directly with the element size in the boundary
layer model. When the J -integral is scaled by element size and reference stress Go
and the crack growth by element size, the crack growth resistance curves coincide.
So crack growth resistance curves are self-similar.

The effect of a negative biaxiality (simulating specimens loaded in tension) is to give

a higher initiation J-integral and higher resistance to crack growth, which
corresponds with experimental observations. The effect of a positive biaxiality
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(simulating, for example, a compact tension specimen) is opposite but less
pronounced. This, too, corresponds with experimental observations.

By modifying the boundary layer model with the biaxiality parameter, the self-
similarity of the crack growth resistance curves is lost.

It is concluded that the modified boundary layer model, in combination with the
modified Gurson model, is suitable for investigating geometry effects on crack
growth initiation and resistance. Further studies should be aimed at determining the
various parameters in the modified Gurson model.
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nt mesh used for ductile crack growth calculations

Figure 1 The finite eleme

crack tip

Figure 2 Detail near the crack tip of the finest mesh (L/R=0.05 103)
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Figure 3  Stress 0 in the ligament (Jd =J /(c,a) , B=0, L/R=0.01 10-3)
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Figure 4 Void volume fraction in the ligament (B=0, L/R=0.01 10-3)
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Figure 5 Normalised crack growth resistance curves for three element sizes
(B=0, L=element size, R= outer radius of the boundary layer model)
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Figure 6 Normalised crack growth resistance curves for element sizes L=0.05,
and 0.2, and for biaxiality B= -1, and +1
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