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MODELLING MICROMECHANISMS AND STATISTICAL FEATURES

OF DUCTILE FRACTURE

A. PINEAU*

Ductile rupture involves three successive stages : cavity
nucleation, void growth and coalescence, which are briefly
reviewed. Then recent developments to model ductile rupture,
based on the mechanics of porous materials are underlined, as well
as the importance of the inhomogeneity in cavity distribution.
These models are used to predict the variation of ductility with
stress triaxiality observed in steels, Al alloys and a cast duplex
stainless steel. In this material a model is introduced to predict also
the scatter and the size effect observed on notched tensile
specimens. Simple approaches are also presented to model the
fracture toughness of these materials.In particular a statistical
model based on a Monté-Carlo type simulation is presented to
calculate the fracture toughness of a duplex stainless steel in which
continuous cavity nucleation from cleavage cracks formed in the
ferrite phase plays a predominant role.

INTRODUCTION

It is well known that, in most structural materials, ductile rupture involves three
stages. The first stage is associated with the nucleation of cavities which take place
from particles, such as inclusions, or occasionally from one of the phases present in
multiphase materials. It is clear that, if cavity hucleation could be delayed, large
improvements in ductility and fracture toughness could be achieved. It is therefore
important to investigate the metallurgical factors and the mechanical variables
controlling this first stage of ductile rupture. Then the growth of cavities initiated
from the above sites takes place, followed by cavity coalescence. A large research
effort has been made over the past decade to model the last stage of ductile fracture
in order to derive fracture criteria which can be incorporated in the analysis of
crack tip stress-strain field to predict the fracture toughness of structural materials.
These models are largely based on the mechanics of porous materials. In many
cases it is assumed that the cavities are homogeneously distributed, which is far
from the actual situation met in structural materials. This is the reason why in the
present paper a large attention is paid to the effect of the non-uniform distribution
of cavities on the ductility and the fracture toughness.

The paper is divided into two main parts. The micromechanisms of ductile fracture

and the mechanics of porous materials are firstly reviewed. In this part, the
emphasis is laid upon the importance of the inhomogeneity of plastic
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strain between the matrix and the second phase particles, and upon the effect of the
inhomogeneity of cavity distribution. In particular it is shown that it is possible to
model the ductility of multiphase materials, such as duplex stainless steels, in
which the statistical nature of continuous cavity nucleation plays a predominant
role. This first part deals with the mechanical behaviour of elementary volume
clements while, in the second part, models used for predicting the fracture
toughness of structural materials are briefly reviewed.

DUCTILE RUPTURE
Cavity nucleation

When nucleation sites are associated with large (2 1 um) and widely spaced
particles, discontinuous nucleation can be described in terms of continuum
mechanics. A nucleation model based on the existence of a critical stress, od, was
thus proposed by Argon etal [1] as :

od = oeq +om 1)

where ceq is the local equivalent von Mises stress, while o is the hydrostatic
stress. In Eq. 1, the inhomogeneity in plastic deformation between the matrix and
the inclusions does not appear explicitly. This appears more clearly in the
expression proposed by Beremin [2] to account for cavity nucleation from MnS
inclusions in low alloy steels. This expression which was derived from the
application of inclusion theory developed by Eshelby [3] can be written as :

od = X1 +k (oeq - 50) )

where ] is the maximum principal stress, oo the yield strength, and k is a function
of particle shape.

These expressions can only be applied to model discontinuous nucleation,
but it is usually observed that void nucleation occurs continuously over a wide
range of strains, sometimes after only a critical strain has been reached. Moreover
large inclusions are often observed to be preferential sites. This may arise for
several reasons [4] : (i) Large inclusions have a greater probability of containing
volume or surface flaws; (i) Large particles have more difficulty of relaxing large
stress concentrations; (iii) Interactions effects between inclusions of larger than
average size and spacing. This results in an increasing number of cavity sites with
plastic strain.

Whether continuous nucleation is a strain-or stress-controlled phenomenom
is still widely discussed. Kwon and Asaro [4] concluded that an interfacial stress-
controlled nucleation criterion was more realistic than a strain-controlled criterion
to characterize the nucleation behaviour of spheroidized steels. On the other hand,
the results obtained on Al alloys by Walsh et al [5] and on a cast duplex stainless
steel by Pineau and Joly [6] and by Joly et al [7] indicate that cavity nucleation is
essentially strain-controlled. The latter material (CE8M steel) contains about 25%
of ferrite phase embedded in a large grain ( ~ 1 mm) and ductile austenite matrix.
The ferrite phase is embrittled after prolonged aging for 700 hours at 450°C. This
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results in a material with a low Charpy toughness of about 3 daJ/cm? at R.T.
Interrupted tensile tests show that cleavage cracks are nucleated within ferrite
islands (Fig.la), and then grow as cavities which are preferentially located in a
number of clusters (Fig.1b). It was shown that these clusters of damaged material
were preferentially located within the austenite grains oriented for single slip [7].
This strong inhomogeneity in cavity nucleation is likely due to the high
deformation incompatibility between both phases which have different
crystallographic structure and different hardness. The incompatibility is more
pronounced when austenite is deformed in single slip [8]. Measurements of the
number of cracks per unit area showed that the density of cracks increases in these
grains, and that new clusters were formed when the plastic strain was increased. In
this material the component of the volume fraction of porosity associated with the
nucleation could be expressed as :

dfn = An dgeq (3)

where d€eq is the increment of the equivalent plastic strain, while An is the
nucleation rate, which is assumed to be constant but to be distributed from grain to
grain, as indicated above.

Cavity growth

Substantial progress in the understanding of void growth has been made
through the theoretical models by Berg [9], Mc Clintock [10], and Rice and Tracey
[11]. These models are based on a number of simplifying assumptions which do
not necessarily apply to real materials. In particular, they assume that there is no
interaction effect between neighbouring cavities. In the Rice and Tracey model, the
cavity growth rate at large stress triaxiality is given by :

D = dR/R d€eq = dt/3t(1-f) d€eq = (0.283 exp (B3om/2oeq) (@)

where R is the cavity size, f, the volume fraction and o, the hydrostatic stress. In
the literature there are relatively few experimental verifications of this expression.
However recently a comparison between the results of numerical calculations and
experiments was made by Worswick and Pick [12], who showed that a number of
experimental results [13-15] were in good agreement with Eq.4, except for the
preexponential term which was found to be larger than 0.283. This difference may
arise from several reasons. The first reason lies in the fact that a recent analytical
work by Huang et al [16] indicates that the widely used high triaxiality
approximation (Eq.4) underestimates the cavity dilatation rate by more than 50% at
all levels of stress triaxiality above om/ceq= 1. Another reason might be due to the
fact that, as a rule, structural materials contain a second population of cavities
nucleated from particles, such as carbides in steels or strengthening precipitates in
Al alloys. A limited number of metallographic observations similar to those
reported by Marini et al [15] tend to show that the growth of large cavities initiated
from inclusions can be accelerated by the presence of smaller voids initiated from
carbides and located in their vicinity. Recently the growth of cavities in a two
population material has been treated theoretically by Leblond and Perrin [17]. In
their model the matrix is assumed to have a spherical shape with an initial volume
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fraction f1 and is submitted to a hydrostatic stress £m, as shown in Fig.2a. A
damaged zone of radius, a, with a different volume fraction, f2, is located at the
center of the sphere of radius, b. The results of the analytical model are shown in
Fig.2b where 1 (=) corresponds to the condition b --> . In all cases, it is noticed
that the local void growth rate in the matrix at r = a is larger than at infinity (r -->
). In particular, when f2/f] --> =, ie in the case of a central cavity, the local void
growth rate is twice that corresponding at infinity. Furthermore, this figure shows
that the void growth rate associated with the central inhomogeneity, measured by
the ratio f, /f,(1—1£,)/f,(ee)/ fi(1-1}) is larger than that of the matrix when
f2/f1 > 1.

Cavity coalescence and criteria for ductile rupture

The last stage of ductile rupture requires a large research effort and a large
number of approximations to keep the problem tractable. This section is divided
into three parts. It is firstly shown that the criterion for ductile rupture based on
critical void growth, initially introduced by McClintock [18] and then used by a
number of authors, can still be extremely usetul. Then, the developments achieved
by the introduction of the mechanics of porous materials are presented. The
limitations of these developments due to the fact that the inhomogeneity in cavity
distribution is not properly taken into account are underlined. Finally, it is shown
how this important feature of cavitating materials can be incorporated either to
predict the anisotropy of ductile rupture in Al alloys or to model the scatter and the
size effects observed in the ductile rupture of cast duplex CF8M stainless steel.

Critical void growth at fracture

When the strain for cavity nucleation represents only a small fraction of the
ductility, the simplest criterion is obtained by integrating Eq.4 and by assuming
that fracture takes place for a critical porosity [18]. For a stress history during
which the stress triaxiality is kept constant, this leads to :

Ln(R/R,), = 1/3 La(t/t,), = 0.283 g, exp (30,/20,) 5)

In a number of cases, including C-Mn-Ni-Mo steels containing various
amounts of MnS inclusions (Pineau [19]) and, more recently 7XXX Al alloys
containing different amounts of Fe and Si-rich particles (Achon and Pineau [20]), it
was shown that Eq.5 was relatively well satisfied. Examples illustrating the
situation observed in two high strength Al alloys containing two widely ditferent
volume fractions of Fe-rich particles are shown in Fig.3. In these materials, tensile
tests were carried out on axisymmetrically notched specimens cut along the three
main directions of thick plates. The geometry of these specimens which is similar
to that used in other studies, (see eg.[6,19]) was chosen in such manner to produce
different stress triaxialities. In all cases, similarly to C-Mn-Ni-Mo steels, it is
observed that, within a first approximation, Lnep is proportionnal to om/oeq with a
slope of - 3/2, as predicted by Eg.5. In Al alloys, the calculated critical void
growth, (R/Ro)c, is found to be extremely small, especially in the short-transverse
direction (typically 1.05 to 1.15). These values are still smaller than those
calculated in steels [19].
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Here it should also be added that, in many situations, cavity nucleation
cannot be neglected. This should produce differént variations of ductility with
stress triaxiality. The situation corresponding to the CF8M steel mentioned earlier
is a good example to illustrate this specitic point (see [6,8] and Pinecau [21]. In this
material, in adding the nucleation component (Eq.3) to the growth term (Eq.4), it
can casily be shown that, if it is assumed that ductile fracture occurs for a critical
volume fraction of cavities, fc, then the variation of ductility with stress triaxiality
can simply be expressed as :

e, = 1/KLn[l+K(f/A,),] (6)

where K = 3 x 0.283 exp (3om/20eq)- This expression is plotted in Fig.4 for
various values of (f/Ap)c. This figure clearly shows that, as expected, for large
values of Ap, the ductility is no longer strongly dependent on om/ceq- In Fig. 4,
we have also reported the experimental results obtained on CF8M steel. These
results show that, in this material in which cavity nucleation plays a predominant
role, as indicated carlier, the ductility is only slightly dependent on stress
triaxiality, which was not the situation observed in ferritic steels [2,6,19,21] or in
Al alloys [20].

Mechanics of porous materials

Many studies have been devoted, over the past decade, to model the
softening effect produced by growing cavities and void coalescence, using the
mechanics of porous materials. In these models the plastic flow potential is
dependent on cavity volume fraction. It is beyond this paper to review all the
existing theories but, instead, to show how these theories can be used to model
ductile rupture. Here we refer only to the Gurson-Tvergaard (GT) and the
Rousselier models.

In the GT potential, the yield criterion is written as (Tvergaard [22]) :

m

ol I Y? +2q,f cosh (3q,0 /2Y) —1—q.f® =0 (7

where Y is the flow stress of the undamaged matrix. It was shown [22] that

qr~ 15 qp ~ land q3 = qlz. More recently, using a self consistent scheme,
it was shown by Perrin and Leblond that q, = 4/e = 1.47 [23]. For small volume
fractions, Eq.7 can be simplified as :

o, =(3/2)s;s; = Y[1-0.50f exp (3c,,/12Y)] (®)

e

where the softening effect due to the presence of cavities appears clearly to be
more pronounced at large stress triaxiality, as expected. The associated increment
in cavity volume fraction is given by :

de, = df/(1-f) = 0.75 f exp (30, /2Y).de,, 9)

which is very similar to Eq.4.
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The application of the GT potential was reviewed by Needleman [24]. In the
simulation of ductile fracture of a material in which the cavities are assumed to be
homogeneously distributed, it was shown that this model largely overestimated the
observed ductility of structural materials. An accelerating function f* was
introduced by Tvergaard and Needleman [25] to simulate the effect of void
coalescence. Initially f* = calculated from Eq.9 but, at some critical volume
fraction, fc, £* is written as * = fe + & (f-fc) where 8 is an accelerating factor. This
model therefore bears a strong resemblance with the (R/Ro)e criterion. In both
cases, they can be considered to be "black boxes" in the absence of a proper
account of cavity distribution. The effect of a non-uniform distribution of porosity
on failure in a porous material was analyzed numerically by Becker [26] using the
same modification of the GT potential. This author showed that a failure criterion
based on a critical void volume fraction that is only weakly dependent on stress
triaxiality was appropriate. This reinforces the soundness of the (R/Rp)c criterion.
Here it should also be added that the GT potential has also been used to model the
toughness of Charpy V specimens [27,28]).

The yield function proposed by Rousselier [29,30] can be written as :

o, /(1-DHY=1- [DB(B)/ Y]exp [0, /(- o, | (10)
with : dp=df/f(1-f)= D exp [0, /(1-1)o,] dey (11)
and B(B) = oif, exp B/ (-1, exp B 12)

This function bears also a strong resemblance with the GT potential,
provided that it is assumed that D = 3x0.25 and ©1 = 2Y/3. Rousselier
implemented his criterion in a F.E.M. code to simulate the failure of notched bars
(see also [6]) but, similarly to the other models (f¢ in the GT potential), it was
necessary to introduce another parameter, here the mesh size, £, to simulate
plastic flow localization and ductile fracture. In the following one way of avoiding
the use of these fitting parameters, such a fc or £, is introduced by using the
distribution of cavities.

Anisotropy. scatter and size effects in ductile rupture

Mudry [31] has also used the GT potential to model the ductile fracture of C-
Mn-Ni-Mo steels, but without introducing the accelerating effect in f used by
Tvergaard and Needleman [25]. The basis of the model is schematically shown in
Fig.5 where the undamaged stress-strain curve of the matrix is compared to those
corresponding to different values of the initial volume fraction of cavities, fo.
Fracture of a component, such as a notched specimen, is assumed to take place if
there is a non-vanishing probability of finding a volume element for which the
local volume fraction is such that the associated stress-strain curve reaches a
maximum. The macroscopic ductility is then calculated, as indicated in Fig.5,
assuming that the elementary volume elements are assembled either in series or in
parallel.
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More recently this approach was used to predict the ductility of
axisymmetrically notched specimens of two high strength Al alloys, containing
widely different values of inclusions [20]. In these materials, the Fe,Si-rich
particles are strongly inhomogeneously distributed as a consequence of hot rolling
deformation. Quantitative metallography was used to draw the Voronoi cells
associated with the inclusions. Then an original procedure based on the distance
between neighbours [8,32] was used to isolate the clusters of inclusions which
present a local density much higher than in their neighbourhood (see eg. Fig.6
where two different section planes are shown). An effective volume fraction, feff,
was then calculated from these observations. feff was defined as the volume
fraction of spherical inclusions which have the same surface as the area of the
clusters projected on the presumed fracture surface. This volume fraction which is
significantly larger than the mean volume fraction was then compared to that
inferred from the approach presented earlier (fpred)- Fig.7 shows a good agreement
between both values of f determined in the three main directions of the rolled
plates.

A similar approach was adopted to model the ductility of notched specimens
of CE8M steel [8,32]. In this material it was shown earlier that the damaged zones
were grouped into clusters (Fig.1). This time, the size and the mean distance of the
clusters is such that they cannot be considered to be homogeneously distributed. A
statistical analysis, based on a Monte-Carlo simulation, of the fracture of
axisymmetrically notched specimens was carried out, using finite element
calculations. The number of damaged grains, their position and their nucleation
rate Ap (Eq.3) were regarded as random. The details of the calculations are given
elsewhere [32]. Fig.8 shows a good agreement between the experimental and the
simulated data. The large scatter observed both experimentally and numerically 18
attributed to the small number of austenite grains unfavorably oriented (single slip)
with respect to the specimen size, combined with the large scatter of Ap in these
grains. The decrease of the scatter predicted by the model for smooth specimens
could be related to an important size effect. However a specitic study showed that
one reason for the higher experimental scatter observed in these specimens was due
to the fact that the effective volume of smooth specimens must be reduced because
of the existence of local necking which was not taken into account in the model.
Further tests on notched specimens with the same geometry but with different
dimensions were carried out to investigate the size effects. The results are given in
Fig.9 where it is observed that the model predicts correctly the decrease of the
ductility observed when the specimen size is increased.

FRACTURE TOUGHNESS

At the crack tip, as in many models based on local criteria, it is necessary to
introduce a characteristic distance, A, the famous "process zone". The strains and
the stresses are averaged over this distance. In F.E.M. calculations this size is used
for the first element located at the crack tip. The choice of this size is not t0o
critical for a stress-controlled failure mode due to crack tip blunting effect, but it is
much more critical for a strain-controlled failure mode, ie typically in ductile
rupture. Theoretically the introduction of constitutive equations in which a
coupling effect with damage is introduced, such as the flow potentials introduced
earlier should contribute in solving this difficult problem. However, as indicated
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above, in these models, there are still a number of variables which must still be
considered to be adjustable parameters.

In spite of these difficulties it should be kept in mind that there exist in the
literature a number of models based on this averaging procedure which are
extremely useful (For a review, see eg.[21]. In materials tor which cavity
nucleation can be neglected, a model based on the calculated average void growth
was shown to be satistactory. This was applied to the prediction of the fracture
toughness of C-Mn-Ni-Mo stecls in which cavities are easily nucleated from MnS
inclusions. For small scale yielding (SSY) conditions, it was shown [34] that there
exists a relationship between JIC and Ln (R/Rg)c¢ :

Jic = a A oo Ln (R/Ro)e (12)

where A is the mean distance between inclusions in a plane perpendicular to the
crack front and o is a numerical factor. For large scale yielding (LSY) conditions
this model was used to show that the values of Jj¢ were not intrinsic, but dependent
on specimen geomeltry. In particular, the values of Jjc are predicted to be larger in
CP type specimens which are subject to tensile loads than in CT type specimens
which are essentially submitted to bending stresses. The prediction has now
received a number of experimental evidences (see eg. [35,36]. Similar approaches
have to be developed to model the fracture toughness of materials in which cavity
nucleation occurs continuously and cannot be neglected. A good example is
provided by multiphase materials similar to the duplex stainless steel described
earlier.

For this material in which large inhomogeneities in the spatial distribution of
damage zones is observed (Fig.1), a model based on a Monte-Carlo simulation
similar to that used for notched specimens was developed. The details are given
elsewhere [33]. The results of the numerical simulations are shown in Fig.10 where
the distribution of Jg 2 results as predicted from the model for 18 mm thick
specimens is compared to a number of experimental results [8,37]. A large set of
experimental data is needed to compare the results of the model, on a statistical
basis, especially for the lower til of the distribution. However this model is in
broad agreement with the experiments, which is all the more encouraging as it is
essentially based on microstructural parameters. It can also be added that this
model was also used to predict the size effect, as earlier in notched specimens. CT
specimens with the same in-plane dimensions but with ditferent thickness were
modelled. The results are given in Fig. 11 This figure shows the median of Jo.2 (50
th percentile) which is very close to the average, the 16th and the 3th percentiles
calculated from 100 simulations. Unlike the case of notched specimens (Fig.9),
there is almost no effect on the average. This results from the fact that, in tensile
notched specimens, fracture is controlled by the failure of the most damaged
grains, and it is well known that the statistics of extreme cases depends on the
sample size. On the other hand, in the model, for CT specimens, crack growth is
the sum of the growth contribution for all the damaged grains and results therefore
from an averaging process. However when extreme cases are considered we can
notice, for example, that the 3th percentile increases with specimen thickness. The
probability of finding an extremely low value for the fracture toughness is much
lower for a thick specimen than for a <mall one. This expected behaviour may have
strong practical implications both for mechanical testing and for the use of
conservative values in the assessment of the structural integrity of components.
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CONCLUSIONS

The micromechanisms and the mechanics of the three stages for ductile
rupture have been briefly described. In a number of materials, such as territic steels
or Al alloys, it is shown that cavity nucleation occurs at a critical strain which may
be a function of stress triaxiality, while in other materials, such as duplex stainless
steels, void nucleation must be modelled as a continuous process. In all cases,
statistical aspects such as the inhomogeneity in the cavity distribution play a key
role. These statistical features account for the scatter in the results and, in some
cases, for the size effect observed when testing specimens of different sizes. The
mechanics of porous materials is a very promising tool to model the softening
effect associated with cavitation, provided that the statistical distribution of cavities
is taken into account. When the deviation from a homogeneous distribution occurs
over large distances, it may be necessary to use statistical models, based on a
Monte-Carlo simulation, as shown in a duplex stainless steel.

Simple expressions between the fracture toughness and local criteria, such as
critical void growth, have been established for small scale yielding conditions.
Similar expressions do not exist for large scale yielding conditions when the
toughness cannot be described by a single loading parameter. The potential of a
model incorporating the statistical aspects of ductile damage encountered in a
duplex stainless steel is highlighted. This model was used to predict not only the
scatter but also the size effects observed in this material.
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— =]
100 pm

Figure 1 CF8M Steel. a) Cleavage crack formed at the intersection of two
mechanical twins; b) Cavities initiated from cleavage cracks.
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Figure 2 Model material with two populations of cavities. a) Model; b) Cavity
growth as a function of £2/1 ratio (Ref.[17]).
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a) b)
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Figure 3 7075 and 7475A1 Alloys. Ductility ~versus Stress triaxiality. a)
Longitudinal direction; b) Short transverse direction.
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Figure 4 Ductility as a function of Figure 5 Softening effect due to the
stress triaxiality for various values of presence of cavities.
the nucleation rate An.
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Figure 6 7075A1 Alloy. Inclusion clusters determined by quantitative
metallography in the a) TL plane; b) LS plane.
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Figure 7 Comparison between the  Figure 8 CF8M Steel. Ductility
volume fraction of cavities at failure versus stress triaxiality. Comparison

predicted (fpred) and measured (feff)  between calculated and experimental
in 7075 and 7475 Alloys. results.
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Figure 10 Distribution of Jg 2 results
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