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ABSTRACT 

In this paper the elastic interaction of multiple delaminations in laminated structures subjected to out of plane 

loading is studied. This has been accomplished by employing beam theory approximations of elasticity. For a 

cantilever beam, the shielding or amplification of the energy release rate of the cracks has been determined. 

Important short and long range interactions between the cracks, depending on their transverse spacing, have 

been shown. The results are similar to those found for the interaction of cracks in infinite bodies, but with 

strong modification of certain characteristics due to geometry. The shielding and amplification effects 

strongly influence the macrostructural behavior of the beam, leading to local instabilities, hyper-strength 

phenomena and crack arrest. The finite element method has been used to validate the results. 

1.  INTRODUCTION 

Laminates are widely used in man-made structures due to their superior strength to weight ratio 

and mechanical properties. Industries such as aeronautical, aerospace, naval and civil depend on 

the remarkable properties of these materials in order to create innovative and reliable structural 

systems. Laminates are also found in biological structures such as seashells and insect cuticle. The 

strength and stiffness of these structural systems can be significantly reduced and the collapse 

mechanisms changed by the presence of internal damage in the form of interlaminar flaws. 

Damage can take place during manufacturing or growth and when the structure is in service. 

Under different load and geometric conditions, these delaminations may tend to localize into one 

crack or diffuse into a region of multiple cracks, drastically altering the macrostructural response 

of the structure. Under service loading conditions the structure may prematurely fail due to the 

catastrophic propagation of the delaminations.  The understanding of this failure mechanism is 

therefore an important consideration when working with these material systems. The quasi-static 

and dynamic response of structures with a single delamination has been studied extensively, 

accounting also for cohesive and bridging mechanisms acting along the delamination faces (see [1-

2] for some work of the authors). This paper deals with the problem of multiple delamination. 

In a structure with multiple delaminations, an important phenomenon to consider is the 

interaction between the delaminations. An example of this, from a different class of problems that 

have been studied over the last years, is the interaction of a main crack with a field of micro-cracks 

in an infinite medium, which can simulate damage in materials such as concrete or coarse-grain 

ceramics [3-4]. This type of problem has introduced the concept of crack tip shielding and 

amplification, referring to the tenancy of the micro cracks to either decrease or increase the stress 

intensification at the main crack tip. The buckling response of axially loaded laminated structures 

with multiple delaminations has been studied by many authors to investigate the problem of 

Compression After Impact [5-6]. These studies have highlighted the presence of contact along the 

delamination faces during post buckling deformation. The problem of the multiple delamination of 

plates subject to out of plane loading has been studied in [7]. In this paper a simplified model to 

avoid crack-face contact is formulated and the problem of the stability of a system of equal-length 

equally-spaced delaminations to length perturbations is studied. The main conclusion is that, under 

these conditions, the system of cracks tends to grow self-similarly. The problem of the multiple 

delamination of plates subject to transverse load has been tackled recently by the authors [8]. The 



investigation relaxes the assumptions of [7] and focuses on the elastic interaction of the cracks. 

In this paper, the problem of the quasi-static response of a cantilever beam with multiple 

through-width edge delaminations is considered. The elastic interaction of the multiple 

delaminations is studied along with the effect of the geometry on this interaction. Shielding and 

amplification effects are quantified and the quasi-static propagation of a system of cracks is 

studied. The results are verified with the finite element method.  

2.  THEORETICAL MODEL 

The problem under consideration is a beam or plate, with n through-width cracks of arbitrary 

length and transverse spacing. The material is assumed to be homogeneous, isotropic, and linear 

elastic. Fig. 1a shows an exemplary cantilever beam with multiple edge cracks, subjected to a 

static, concentrated force P at its end.  

 
Figure 1 – Cantilever beams with multiple delaminations 

 

The system is divided up into beam segments, as shown in Fig. 1b for a system of two cracks. In 

the general case shown in Fig. 1(a), contact may occur between delaminated beam segments. Non-

frictional contact has been assumed and accounted for in three different ways. The first is to allow 

the beams to interpenetrate (unconstrained model). The second is to assume that the deflections of 

the beams in the cracked region are the same, thus preventing interpenetration (constrained 

model). The third is to approximate contact with distributed linear elastic springs that resist 

interpenetration (spring-contact model). The stiffness of the springs depends on the transverse 

stiffness of the two contacting beam segments. The unconstrained and constrained models are 

upper and lower bounds of this last model that better reproduces the actual response. In order to 

determine the solution, Euler-Bernoulli beam theory has been applied to the system of beam 

segments which interact due to the assumed contact approximation. It is assumed that at each 

crack tip the beam segments have equal rotations (e.g., φ1=φ0=φ2 at aU). When using the spring-

contact model the length of the contact regions are unknown a priori and therefore the solution is 

non-linear. 

The simplest configuration of the beam in Fig. 1a is when all of the cracks are of the same 

length a and are assumed to propagate simultaneously. In this case the beam segments in the 

cracked region all have the same deflections, thus there is no contact between them. The energy 

release rate for the extension of one of the cracks, Gi, has been easily determined from the change 

in total potential energy of the system. Equations (1) show Gi corresponding to n equally spaced 

cracks (1.a) and to n arbitrarily spaced cracks (1.b): 
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where E is the Young’s modulus, h is the height of the beam, Ik (k = 1..n+1) is the moment of 

inertia of the beams cross sections in the cracked region and I0 is the moment of inertia of the 

intact beam. Results show that as the number of equally spaced, equal length cracks increases so 

does Gi (diffuse damage), whereas, if the cracks are concentrated into a small layer (localized 

damage) then as the number of cracks increases, Gi decreases. 

When the cracks are equally spaced it can be shown that the energy release rate for their 

(a) (b) 



simultaneous propagation, given by eq. (1.a), is higher than the energy release rate corresponding 

to the propagation of one of the cracks of the system. However, when they are not equally spaced, 

simultaneously propagation (eq. (1.b)) does not always lead to higher energy release rate and the 

response depends on the transverse spacing of the cracks. Similarly, when the cracks are of 

different length, simultaneous crack propagation is typically not the case. In order to study the 

non-simultaneous propagation of the crack system and investigate cracks of different length, the 

more general crack configuration shown in Fig. 1b has been considered. The analysis is limited to 

a beam with two cracks that, as will be seen, offers a number of interesting solutions. 

When the upper crack is longer, aU > aL, contact arises between the beam segments in the 

cracked region. Non-frictional contact is included by one of the three contact approximations 

discussed above. When the lower crack is longer, aL > aU, there is opening between beam 

segments 4 and 5. No contact approximation is required. The energy release rates for the upper, 

GU, and the lower, GL, cracks have been calculated using the J-integral.  

When the cracks have similar lengths, beam segment 1 (see Fig. 1b) becomes stocky and 

the validity of Euler-Bernoulli beam theory is questionable. The effect of shear deformation on G 

has been investigated by applying Timoshenko beam theory and a finite element method. The 

finite element method has been applied to solve the 2-D elasticity problem utilizing the 

commercial software ANSYS 5.5. The mesh consisted of plane stress isoparametric triangular 

elements. The stress singularities at the crack tips have been modeled with a rosette of quarter 

point elements. Contact along the crack faces have been simulated using gap elements that prevent 

interpenetration of the beams with stiff linear springs. The energy release rate has been calculated 

using two methods, which yielded the same results (the J-integral and the displacement correlation 

technique, which has been used to determine the mode I and II stress intensity factors and derive 

the total energy release rate). 

3.  ENERGY RELEASE RATES 

The energy release rates for a system of two equally spaced cracks of different lengths are shown 

in Fig. 2.  
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(a) Upper Crack 
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(b) Lower Crack 

Figure 2 - Normalized Energy Release Rates 

 

In the figure the lower crack is kept at a fixed length aL/h=5 and the upper crack length is varied 

from aU/h=0 to aU/h=L/h. The figure compares the beam theory spring-contact solution and the 

FEM solution. Fig. 2a shows the energy release rate of the upper crack as its length varies. Fig. 2b 

shows the energy release rate for the growth of the lower crack on varying the length of the upper 

crack. The dash-dot curve, shown in both figures, is the energy release rate of each crack when 

they grow simultaneously for different lengths of the upper crack. Using these diagrams, the crack 

with the maximum energy release rate can be determined. If a crack growth criterion based on the 

total energy release rate is used, this result defines the crack growth conditions of the system. In 

the example shown, for instance, the upper crack will grow when its length is between 2.7h and 



5h; when its length is below 2.7h and above 5h the lower crack will grow. In this example the 

condition for the simultaneous propagation of the two cracks is met only for aU = 5h and when the 

curves cross each other. In Section 5 a map will be introduced which allows for the determination 

of the maximum energy release rate for the system of two cracks, for all crack lengths and 

distributions. Comparisons of the three contact approximations are shown in Fig. 4. 

A notable behavior from figure 2 is the distinct jump in G when the two cracks approach 

the same length. In the beam theory solution, this jump is instantaneous resulting in a 

discontinuity. In the FEM solution the curves are continuous; however the jump is sharp and 

similar to that of beam theory. 

The relative error on G between the beam theory and the FEM solutions is below 5% 

when the upper crack is long enough (aU/h > 2) and the cracks are not of similar length. When the 

two crack tips are closer together (4.2 < aU/h < 7), the error increases due to the discontinuity in G 

predicted by the beam theory solution and to some of the assumptions of the model. The 

assumption of the model that mainly contributes to this error is that of zero relative root rotations 

at the crack tips that leads to an overestimation of the contact pressures along the crack faces.  This 

contribution to the error is highest when the cracks are of similar length (5.2 < aU/h < 6). 

The analysis of the same problem utilizing Timoshenko beam theory shows that for 

sufficiently long cracks of similar length the shear deformations of beam segment 1 have 

negligible effect on the macrostructural response and Gi. Including shear deformation improves the 

centerline deflection profile when contact occurs, however there is still an overestimation of the 

contact pressures due to the effect of root rotations that are neglected in the model. 

 

4.  AMPLIFICATION AND SHIELDING 

A crack in a system of cracks can amplify or shield the 

energy release rates of the other cracks or has no influence 

on them. In order to investigate these effects the energy 

release rate of lower crack, GL, in the system of Fig. 1b has 

been compared with the energy release rate of the same 

crack when the upper crack is not present, GLo. The results 

show that when the lower crack is longer than the upper 

crack, GL is always amplified (GL/GLo > 1). The magnitude 

of the amplification depends on the transverse positions 

and lengths of the cracks. When the lower crack is shorter, 

the energy release rate is either amplified or shielded 

depending on the transverse position on the cracks. Fig. 3 

shows a map of this behavior.  The map shows that if the 

point corresponding to the transverse position of the two 

cracks falls in the upper region (c), GL will be shielded by the upper crack for all crack lengths. 

The magnitude of the shielding effect depends on the lengths of the cracks. If the point falls in the 

lower region (a), then GL is always amplified by the upper crack. If the point falls in the middle 

region (b) then GL is either shielded or amplified, depending on the lengths of the two cracks.  

An example from region (a), amplification of GL, is shown in Fig. 4a. This case 

corresponds to h3/h = 0.25 and h5/h = 0.25. The figure shows GL normalized with respect to GLo on 

varying the length of aL with the length of the upper crack fixed at aU/h=5. When the lower crack 

is shorter than the upper crack, there is an amplification of GL. When the lower crack is longer, GL 

is only slightly amplified. An example of shielding of GL, a point in region (c), is shown in Fig. 4b. 

This case corresponds to h3/h = 0.2 and h5/h = 0.6 , with the length of the upper crack fixed at 

aU/h=5. In this case there a significant shielding effect on GL. 
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It is worth mentioning that the effect of the interaction of the cracks is strong also on the 

mode ratio at the crack tip, which is modified by the presence of other cracks. 
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5.  MACROSTRUCTURAL RESPONSE 

To investigate the macrostructural response of the beam, the quasi static propagation of the system 

of two cracks has been studied. A crack has been assumed to propagate when its energy release 

rate equals the fracture energy of the material, Gcr. The map in Fig. 5 defines regions of different 

energy release rate for the two cracks. It has been constructed using the unconstrained contact 

model. A more complicated map, depending on the length of the cracks, can be constructed using 

the spring-contact model. 
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Figure 5 - Map of Energy Release Rates of the 

crack system, Unconstrained Model 

Figure 6 - Example Load Deflection 

Diagram 

The map depends on the transverse position of the two cracks and incorporates contours 

of equal G of both cracks. The contours correspond to the relative length of the cracks ∆U, when aU 

> aL (solid curves), and to ∆L, when aL > aU (dotted curves). The relative lengths are defined in 

Fig. 5. Points to the left or above the contour corresponding to the relative length of the two cracks 

correspond to transverse distributions of the cracks for which the upper crack has the higher 

energy release rate and will propagate when it reaches critical value.  Points below or to the right 

of the contour correspond to transverse distributions of the cracks for which the lower crack has 

the higher energy release rate. The shaded region in the figure refers to cracks of the same length, 

∆U = ∆L = 0, and define configurations for which the energy release rate of each crack propagating 

simultaneously is maximum. While the contour curves depend on the contact model used, the 

shaded region is independent. The evolution of the cracks can be followed in this diagram by 

updating the contour from that corresponding to the current ∆, to the configuration reached by the 



last crack growth event. 

An example of the load versus deflection response of the delaminated plate is shown in 

Fig. 6. The initial configuration of the system is aU/h = 5, aL/h = 4. The crack system has been 

assumed to grow under crack length control, thus allowing the virtual crack branches, i.e. snap-

back and snap-through, to be followed. The inset in the figure shows the evolution of the lengths 

of the two cracks during loading. In this case the lower crack begins to propagate unstably at point 

A, which can be verified from Fig. 5 (∆U = .25). When the lower crack reaches the length of the 

upper crack at B, there is a corresponding negative jump in critical load due to positive 

(amplification) discontinuity in the energy release rate. After the drop in load at C, the lower crack 

continues to propagate until failure of the structure. The beam theory curve is compared in the 

diagram with the FE curve showing good agreement. 

The behavior of the plate is strongly affected by the initial lengths and transverse 

locations of the two cracks. Other geometric configurations can for instance lead to load versus 

deflection behaviors that show local strain hardening, leading to hyper-strength phenomena, or 

where propagation of one crack will induce the propagation of the other (crack pull-along). 

6.  CONCLUSIONS 

This study has focused on the characterization of the fracture behavior of a transversely loaded 

cantilever beam with multiple delaminations. It has been shown that there are significant short and 

long range interaction effects between the delaminations. These effects can be shielding or 

amplification of the energy release rate of the cracks and are controlled by the geometry of the 

system. A discontinuity in the energy release rate is observed when the cracks reach the same 

length. This discontinuity leads to distinct macrostructural effects during crack propagation, such 

as local strain hardening, crack arrest and crack pull-along. The results of the beam theory model 

have been verified with a 2-D finite element method of analysis and show excellent agreement for 

sufficiently long cracks. Additional effects, such as friction in the regions of crack face contact and 

the effect of cohesive and bridging mechanisms acting along the cracks are under investigation. 

 

ACKNOWLEDGMENTS: MGA and RM supported by Northwestern University, BNC supported 

by ARO Research Contract DAAD19-01-C-0083. 

 

REFERENCES 

[1] Massabò, R., and Cox, B.N., (1999), Concepts for Bridged Mode II Delamination Cracks, J. 

Mech. Phys. Solids, 47(6), 1265-1300. 

[2] Sridhar, N., Massabò, R., Cox, B.N., and Beyerlein, I., (2002), Delamination Dynamics in 

Through-Thickness Reinforced Laminates with Application to DCB Specimen, Int. J. 

Fracture, 118, 119-144. 

[3] Brencich, A. and Carpinteri, A., (1996), Interaction of a Main Crack with Ordered 

Distributions of Microcracks: A Numerical Technique by Displacement Discontinuity 

Boundary Elements, Int. J. Fracture, 76, 373-389. 

[4] Kachanov , M. (1985), On Crack - Microcrack Interactions , Int. J. Fracture, 30(4), 65-72. 

[5] Larsson, PL., (1991), On Multiple Delamination Buckling and Growth in Composite Plates, 

Int. J. Solids Structures, 27(13), 1623-1637. 

[6] Suemasu, H. (1993), Postbuckling Behaviors of Composite Panels with Multiple 

Delaminations, J. of Compos. Mater., 27(11), 1077-1096 

[7] Suemasu, H., Majima, O. (1996), Multiple Delaminations and Their Severity in Circular 

Axisymmetric Plates Subjected to Transverse Loading, J. of Compos. Mater., 30(4), 441-463 

[8] Andrews, M. G., Massabò, R. and Cox, B. N., (2004), Elastic Interaction of Multiple 

Delaminations in Laminated Structures, XXI ICTAM, August 2004, Warsaw, Poland, in press. 


