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ABSTRACT. The cohesive zone model has been widely used for the description of quasi-static crack growth of 
interfaces and, recently, evolutions have been proposed in order to account for fatigue phenomena. In this work 
the cohesive zone model previously developed by the authors to simulate fatigue crack growth at interfaces in 
2D geometries is extended to 3D cracks under mixed-mode I/II loading. 
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INTRODUCTION 
 

omposite materials and structural adhesive bonding showed their first applications in the aerospace industry, but 
thanks to continuous performance improvement and cost reduction, many more industry fields are approaching 
the use this type of materials. The extensive employment of composites requires a more and more sophisticated 

capability to simulate and predict their mechanical behaviour. For this purpose, analytical methods are being progressively 
integrated or replaced by the Finite Element Method. In engineering applications, fatigue life is one of the most important 
design issues and for the previously mentioned materials the fatigue life is related to the initiation and propagation of 
defects, which produce progressive adhesive debonding or composite material delamination. 
This kinds of problem were historically studied using fracture mechanics where the kinetic of a fatigue crack was 
represented by a Paris-like equation which relates the range of strain energy release rate ΔG, to the crack growth da/dN: 
 

 dda
B G

dN
              (1) 

 

In this simple approach the finite element method can be adopted by creating and running models with different crack 
lengths. For each analysis the value of the strain energy release rate can be obtained using the contour integral or the 
virtual crack closure technique (VCCT). Hence the number of cycles can be obtained by manually integrating the crack 
growth rate computed from the Paris law. 
In some finite element softwares, this procedure is integrated in special features (i.e. *Debonding in Abaqus®). An 
alternative way for dealing with fatigue crack growth problems is using a cohesive zone model. This model was initially 
used to described the plastic zone at the crack tip in thin metallic sheets and later it has been used as a micromechanical 
model for the simulation of the quasi static crack growth problems, especially in the case of interface cracks such as 
delamination in composites and bonded joints [1-4]. The possibility to simulate the growth of a defect without any 
remeshing requirements and the relatively easy possibility to manipulate the constitutive law of the cohesive elements 
makes the cohesive zone model attractive also for the fatigue crack growth simulation. In the literature several works deal 
with this topic: Maiti and Geubelle [5], Roe and Siegmund [6] and Muñoz [7] defined models where the cohesive strength 
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is reduced using appropriate laws and parameters in a cycle by cycle approach. Turon et al [8] proposed instead a model 
where the calibration of cohesive parameter for cyclic loading is not required since a damage homogenization criterion is 
used for relating the experimental FCG rate with the damage evolution of the cohesive elements. Moreover a cycle-by-
cycle FE analysis is not necessary for the integration of damage rate, which means a significant computational time saving. 
Using [8] as a reference, but modifying the damage definition, including an automatic strain energy release rate evaluation 
and introducing different mixed mode criteria for the computation of the fatigue crack growth rate, the authors developed 
a model able to correctly predict fatigue crack growth at interfaces in two-dimensional geometries [9,10]. In this work, the 
extension of the model to full 3D cracks undergoing mixed-mode I/II fatigue loading is presented, emphasizing especially 
the changes done with respect the 2D model.  
 
 
DESCRIPTION OF THE 2D CZ MODEL 
 

or the sake of brevity, only the most important features of the two-dimensional model are shown (the complete 
description can be found in the literature [9,10]). A triangular cohesive law is used (see Fig. 1) where smax is the 
maximum stress, K0 the initial stiffness and C the critical opening. The fracture energy corresponds to the area 

underlying the cohesive law. The damage value D decreases the stiffness per unit area K with respect to the initial one, 
following the equation 
 

  01K D K              (2) 
 

 
Figure 1: Cohesive law 

 
Damage is representative of the effect of micro void nucleation and micro-cracks, therefore, considering a general 
Representative Surface Element (RSE) with a nominal surface equal to Ae, and a damaged area due to micro-voids or 
micro-cracks equal to Ad, D can be written [11] 
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Applying the equivalence criterion between damage and crack growth proposed in [8], damage increases with the number 
of cycles following Eq. 4, where ACZ is the process zone area, evaluated by FE analysis on-the-run (see [9,10] for more 
detail).  
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            (4) 

 

The procedure for the prediction of the crack growth rate has been implemented into the FE code ABAQUS using the 
embedded USDFLD subroutine to apply damage to the initial stiffness K0. The simulation is carried out as a static analysis 
where a load equal to the maximum load of the fatigue cycle is applied. The strain energy release rate G is computed and 
then, using the cycle load ratio R=Pmin/Pmax, the strain energy release rate amplitude is calculated as 
 

 21G R G             (5) 
 

The value of ∆G is compared with the fatigue crack growth threshold ∆Gth. If ∆G > ∆Gth the propagation will take place, 
otherwise the analysis is stopped and no propagation will occur. In the 2D model, at the beginning of each increment n, 
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the damage Din in  the cohesive elements belonging to the process zone ACZ is increased by a given quantity ∆Din = 
min{1-Din, ΔDmax} where ΔDmax is a user-defined value. For each element lying in the process zone an increment in the 
number of cycles, ∆Nin is then estimated using Eq. 4 and the value of G at that increment, ∆Gn. The routine searches for 
the minimum value among the calculated ∆Nin. This value, ∆Nminn, is assumed to be the equivalent number of cycles of the 
increment. Then, the number of cycles is updated (Nn+1), and using again Eq. (4) the new damage distribution is computed 
for all the elements belonging to the process zone (Din+1). The process zone is defined as where, during the analysis, the 
opening is higher than the maximum opening in the cohesive zone when the applied strain energy release rate is equal to 
the strain energy release rate threshold. Since the opening field ahead of the crack tip changes during crack propagation, 
the process zone area is continuously updated. It is worth to underline that the overall procedure is fully automated, i.e. 
the simulation is performed in a unique run without stops. 
The G at each increment is required in order to evaluate the crack growth rate. In 2D, G is evaluated through the 
calculation of the J-integral along a path Ω corresponding to the top and bottom nodes of the cohesive elements. With 
this choice, and neglecting geometrical nonlinearity, the J-integral reduces to: 
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           (6) 

 

Extracting the opening/sliding and the stresses in the cohesive elements at the beginning of the increment, the strain 
energy release rate is then computed. An interesting feature of this approach is that the mode I and the mode II 
component of the J-integral can be obtained by integrating separately the second or the first components of the integral in 
Eq.(6), respectively. Under mixed-mode I/II loading conditions, the parameters B and d of Eq. (1) are a function on the 
mixed mode ratio MM = GII/(GI +GII) according to the Kenane and Benzeggagh model [12] as given by the following two 
equations: 

 

   1 2 1
dm

d d d d MM             (7) 
 

  2 1 2ln ln ln ln 1 Bm
B B B B MM            (8) 

 

where d1, B1 and d2, B2 are, respectively, the parameters under pure mode I and pure mode II, and  mB and md are material 
parameters. 
 
 
EXTENSION OF CZ MODEL TO 3D GEOMETRIES 
 

or 3D simulation, the framework of 2D model in maintained, while the calculation of G must be done at 
different locations along the crack front in order to account for 3D effects.  
The J-integral method shown above can be easily implemented for a two-dimensional problem, since there is only 

one possible path. In the case of three dimensional problem the implementation is more difficult since several paths can 
be identified along the crack width, and moreover their definition is rather troublesome, especially when dealing with 
irregular meshes. In this work, the cohesive zone is meshed with a regular grid equally sized brick cohesive elements, 
therefore Eq. 6 can be computed on parallel contours along the crack front, each contour pertaining to a row of cohesive 
elements across the crack front. The damage rate dD/dN can be therefore different along the crack front depending on 
the J-value. 
 

 

 

Figure 2: The 3D geometry is reduced to 2D slices, each one pertaining to a row of cohesive elements. 
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A 3D model is therefore considered as a sequence of slices, each one analysed as a 2D model (Fig. 2). 
 
 
FE MODELS 
 

he model geometries are illustrated in Fig. 3, while the material properties, the applied load, the cohesive law 
parameters, the specimens dimension and the Paris law equation coefficients are shown in Tab. 1.  
The mesh size in the adherends is 1 mm, while in the cohesive layer it is reduced to 0.5 mm. For all the simulation 

a load ratio R = 0 is assumed. 

 
Mode I - DCB 

 

 
Mode II - ELS 

 

 
Mixd mode I/II – MMELS 

 

Figure 3: Geometries simulated. 
 

Young’s Modulus E [MPa] 70000 
Poisson's ratio  0.25 
Applied load P [N] 100 

Mode I Cohesive energy [N/mm] 0.26 
Mode II Cohesive energy [N/mm] 1.002 
Mode I Cohesive strength max_I [MPa] 30 
Mode II Cohesive strength max_II [MPa] 30 

Initial stiffness of cohesive law K0[MPa/mm] 10000 
Mode I critical opening C_I [mm] 0.0173 
Mode II critical opening C_II [mm] 0.067 

Specimen length L [mm] 50 
Specimen width b [mm] 10 

Specimen thickness 2h [mm] 8 
Initial crack length a0 [mm] 10 

Paris law coefficient B 0.5 
Paris law exponent d 3 

KB parameter md 1.85 
KB parameter mB 0.35 

 

Table 1: Material properties [8, 12]. 
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RESULTS 
 

n order to verify the accuracy of the model, two comparison are made: 
 - the estimation of G during the crack growth is compared with the reference trend obtained using the VCCT 
method on an equivalent 2D plane strain model (the 3D innermost path is taken for comparison) 

 - the crack growth rate obtained by the simulation as a function of the range of applied strain energy release rate is 
compared with the crack growth rate given in input. 
These same comparisons are made for the DCB (Fig. 4 - MM=0), ELS (Fig. 5 - MM=1) e MMELS (Fig. 6 - MM=0.4) 
geometry. Moreover for the MMELS geometry the trends of the strain energy release rate and of the Mixed mode ratio is 
evaluated along the joint width (Fig. 7). 

  
 

Figure 4: Comparison between reference trends and the results of the simulation for the trend of G and the crack growth rate; DCB 
geometry. 
 

 

Figure 5: Comparison between reference trends and the results of the simulation for the trend of G and the crack growth rate; ELS 
geometry. 
 

 

Figure 6: Comparison between reference trends and the results of the simulation for the trend of G and the crack growth rate; 
MMELS geometry. 
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Figure 7: Comparison between VCCT and result of simulation for the trends of G and MM along the joint width. 
 
All the comparisons in good agreement with the input values. Moreover since the G-value can change along the joint 
width, different crack growth rates can be displayed, leading to a curved crack front. For example in the DCB simulation, 
when stable propagation is reached, the crack is longer in the mid-plane with respect to the outer bound. This is 
qualitatively in good agreement with experimental observation coming from DCB crack propagation tests (Fig. 8).      
 

     
 

Figure 8: Qualitative comparison of the crack front shape between simulation and experimental fatigue DCB tests. 
 
 
CONCLUSIONS 
 

n this work an initial extension to 3D of the 2D cohesive zone model developed in [10] has been presented. The 
result are compared with reference trends (VCCT and/or analytical) and a good agreement is found. 
Future developments will involve the definition of a procedure able to compute the strain energy release rate without 

any requirements on the mesh shape.   
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