
In-Plane and Out-of-Plane Crack-Tip Constraint Effects 
under Biaxial Loading in Plastic and Creeping Materials 

 
 

V.N. Shlyannikov, N.V. Boichenko, A.M. Tartygasheva  
 

Research Center for Power Engineering Problems of the Russian Academy of Sciences 
Lobachevsky Street, 2/31, post-box 190, 420111, Kazan, RUSSIA: shlyannikov@mail.ru 

 
 

ABSTRACT. In-plane and out-of-plane constraint effects on crack tip stress fields 
under both elastic-plastic and creep conditions are studied by means of three-
dimensional numerical analyses of finite size boundary layer models and plane strain 
reference solutions. Characterization of constraint effects in terms of the non-singular 
T-stress, the local triaxiality parameter h and Tz-factor is investigated. The influence of 
load biaxiality, mode mixity and creep time on the behavior of constraint factors are 
considered. The computational data for constraint factors variation under the plane 
strain are compared with the constraint parameter distributions for the finite thickness 
plate. It is found that under biaxial mixed mode loading the difference between the full 
three-dimensional elastic-plastic and creep stress fields and the plane strain reference 
solutions appears to depend on the distance to the crack tip and to the free surface of 
the plate.  

 
 

INTRODUCTION 
 

Constraint effects in modern fracture mechanics is usually considered as specimen 
configuration and loading conditions influence on crack-tip fields. Therefore, fracture 
toughness dependence is referred to these factors and can’t be used as constant of 
material. However, the general discussion of constrain effects required to be defined 
more exactly. Constraint effects can be defined as specimen prevention from plastic 
strains depended on geometry and loading conditions.  

Constraint effects near the crack tip have long been extensively studied. Most of 
researches are referred to in-plane constraint. Since Williams [1] presented the 
asymptotic expansion of the stress-field around the crack-tip in elastic body that 
includes a non-singular in-plane normal stress component, the T-stress. Subsequently 
Larsson and Carlsson [2], Rice [3] have shown that including the T-stress gave an 
improved representation of the elastic-plastic crack tip stress fields. Based on T-stress a 
two-parameter approach J-T was proposed by Betegon and Hancock [4], which takes 
into account the in-plane constraint on crack-tip fields. O'Dowd and Shih [5,6] have 
introduced as alternative constraint methodology a two-parametrical approach on the 
base of J and a hydrostatic stress parameter Q. The 2AJ   two-parameter three-term 
approach was also proposed to describe the stress field in the vicinity of the crack tip in 
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a power hardening material [7]. However, all these approaches can successfully 
describe the in-plane constraint effects, but they are limited to a planar case. The 
description of out-of-plane constraint should include specimen’s dimension such as 
thickness. Only several researches have been done to describe thickness effect on the 
crack-tip fields under mixed mode loading [8-11].  

In this paper, the remote boundary conditions were based on the first two terms of 
the Williams expansion of the elastic plane stress field. Different degree of mode mixity 
and T-stress are given by combinations of far-field stress level, biaxial stress ratio and 
initial crack angle.  Full-field finite element analysis based on a modified layer approach 
wherein the elastic K-field as well as the T-stress is prescribed as remote boundary 
conditions is employed to model the effects of biaxial loading on nonlinear behavior 
under plane strain conditions.  The geometry considered in detailed three-dimensional 
finite element calculations is biaxially loaded finite thickness plate. Loadings and initial 
crack angle were applied related to a range of far-field biaxial stress ratio (-1, +1) and 
mode mixity I/II (0, 1). 

 
 

DETERMINATION OF OUT-OF PLANE CONSTRAINT FACTORS  
 
It is well known that different traditional approaches, which successfully describe the 
in-plane constrain are not accurate for 3D cracks. Thus, it is necessary to use others 
factors to describe the out-of-plane constraint. The zT  factor introduced by Guo [8] is an 
important parameter to characterize the constraint effect accurately, which is essential to 
establish a three parameter dominated stress field and offers a possibility to characterize 
the stress-state in 3D cracked body 
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where  is the Poisson's ratio, zzyyxx  ,,  are the stress tensor components.  
The triaxiality parameter h has been proposed by authors [12] because of the 

dependency of crack tip constraint and stress triaxiality: 
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where kk  and sij are hydrostatic and deviatiric stresses, respectively. Being the quotient 
of the first invariant of the stress tensor and the second invariant of the stress deviator, it 
is heuristic local measure of energy available for material degradation and damage. As it 
expected the zT - factor and triaxiality parameter h can be describe both in-plane and 
out-of-plane constraint effects.  
The different combinations of load biaxiality and mode mixity are characterized by the 
in-plane elastic nonsingular term [13] 
                                     2cos1 yT                                                         (3) 
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where  is nominal stresses biaxial ratio, y  is the yield stress,  is inclined crack angle. 
All radial distributions of both constraint factors are represented with respect to 
normalized crack tip distance. It then follows purely from dimensional considerations 
that for elastic-plastic problem the distance from the crack tip r must scale by the yield 
stress y  when the loading is governed solely by J-integral 

                    2EarJrr yy   
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where   is applied nominal stress and a is crack length. In the case of creeping material 
the loading governing parameter is the C-integral and a dimensionless polar radius is 

              

    






















1

0
00 2

3
n

n/arCrr



 

 

        
             (5) 

where 0  is a reference stress, 0  is a reference creep strain rate and n is the creep 
exponent. Note that for creeping material, the amplitude factors depend generally on the 
creep time, magnitude of the applied loading, crack geometry and material properties. 
Due to the complexities in the present work considered different creeping stages. In this 
case it is usefull to normalize a current creep time t by the characteristic time tT for 
transition from small-scale creep to extensive creep which is given as 
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where KI is elastic stress intensity factor,  is the Poisson's ratio, E is the Young's 
modulus.  

 
 

RESULTS AND DISCUSSION  
 
Full-field 3D finite element analysis are carried out to determine the elastic-plastic and 
creep stress fields along the through-thickness inclined crack front in a circular disk 
subjected to biaxial mixed mode loadings. Different degree of mode mixity and T-stress 
are given by combinations of far-field stress level, biaxial stress ratio and initial crack 
angle. Loadings and initial crack angle were applied related to a range of far-field 
biaxial stress ratio (-1, +1) and mode mixity I/II (0, 1). 

For FE model only a half of the circular disk is used because of the symmetry about 
the z-axis. The thickness of the layer in z-direction is gradually reduced toward the free 
surface (z/b=0) to accommodate the strong variations of the stress gradients through the 
half-thickness of the plate. In the mid-plane of the circular disk the dimensionless z-
coordinate is z/b=0.5 where b is the plate thickness. 

The 3D distributions of the constraint factors for given combinations of load 
biaxiality and mode mixity have been obtained by the 3D-FEM analysis for the material 
deformation behavior described by additive decomposition of the elastic, plastic and 
creep strains. For the present study, the Young's modulus, Poisson's ratio and the yield 
stress were considered to be 205 GPa, 0.3 and 380 MPa. The strain hardening exponent 
was 4.96. The creep parameter and the creep exponent are B=1.4 10 10  and n=3.    
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line number 1 2 3 4 5 6 7 8 9 10 11 

thickness 
z/b 0 0.0125 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.45 0.5 

 
Figure 1. Out-of-plane elastic-plastic constraint factors radial distributions 

 
In Fig.1 the elastic-plastic radial distributions of the out-of-plane constraint factors 

along the crack front in the thickness direction are plotted for different inclination 
angles, i.e. mode mixity under equi-biaxial tension-compression of 1 . Figs.1(a-b) 
depicts the behavior Tz-factor and stress triaxiality parameter h under pure mode I 
characterized by in-plane T-stress value of T=-0.53, while Figs.1(c-d) displayed mixed 
mode conditions at T=-0.18. As can be seen from these figures, the out-of-plane 
constraint factors decreases along the crack front toward the plate free surface when 
inclination angle altered from pure mode I to mixed mode with increasing crack tip 
distance. 

Displayed in Fig.2 are the variations of the out-of-plane constraint factors radial 
distributions under equi-biaxial tension-compression ( 1 ) and equi-biaxial tension 
( 1 ) loading characterized by in-plane constraint parameters of T = -0.44 and T = 0,  
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line number 1 2 3 4 5 6 7 8 9 10 11 

thickness 
z/b 0 0.0125 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.45 0.5 

 
Figure 2. Out-of-plane creep constraint factors radial distributions 

 
respectively. These distributions related to extensive creep conditions with 
dimensionless creep time 25.9t . The corresponding constraint factors distributions 
for the reference plane strain problem are plotted for comparison purposes in Fig.2(a-d). 
It is found that under biaxial pure mode I loading the difference between the full three-
dimensional creep stress fields and the plane strain reference solutions appear to depend 
on the distance to the crack tip and to the free surface of the plate. Moreover, the plane 
strain solution for the out-of-plane constaint Tz-factor and stress triaxiality parameter h 
coincide with the 3D finite size solids distribution only in the mid-plane (half-thickness 
of plate z/b=0.5) at short distance close to the crack tip. Results for the elastic-plastic 
materials the constraint parameters distributions under biaxial loading at pure mode I as 
a function of the crack front distance show similar trends.  

Figs. 3-4 show the typical behavior of the out-of-plane constraint Tz-factor and the 
stress  triaxiality  parameter  h  along  plate  thickness  direction  for  both  plastic  and  
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Figure 3. The zT  and h distributions along plate thickness direction for a plastic material 

 
   

  
Figure 4. The zT  distributions along plate thickness for a creeping material 
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creeping materials under different biaxial pure mode I loading as a function of a given 
crack tip distance. As it follows from these figures for the some distance behind of 
unloading zone, the out-of-plane constraint factors are a monotonic decreasing function 
of the in-plane constraint factor T-stress, but is nearly independent of the load biaxiality 
at short distance close to the crack tip. It should be noted that the represented numerical 
solutions are accounting for border effect near the free surface of plate.   

 

  
line number 1 2 3 4 5 6 

α 550 650 700 800 850 900 
T  -0,18 -0,34 -0,4 -0,49 -0,52 -0,53 

Figure 5. The zT  distributions as a function of mode mixity and crack tip distance 
 

     
Figure 6. The zT  distributions as a function of creep time and mode mixity 

 
Fig.5 illustrated the out-of-plane constraint factor distributions along plate thickness 

direction for elastic-plastic material under mixed mode biaxial loading of 1 . It is 
found that at the distance close to the crack front  2r  mode mixity has no 

421



contribution to Tz which is nearly independent of in-plane T-stress. However, for a 
given crack tip distance equals the value 20r  the Tz-factor decreases gradually with 
decreasing in-plane T-stress or changing of crack angle  from mode II   45  to 
mode I   90  crack.  The out-of-plane constraint factor Tz for mixed mode is 
dependent not only on T-stress, but also on distance to the free surface of finite 
thickness plate. As it follows from Fig.6 for creeping material Tz-factor is more 
depending on mode mixity than creep time. Generally, comparing of Figs.3-6 it can be 
concluded that the relations between the out-of-plane and the in-plane constraint factors 
characterized by Tz, h and T, respectively, show that the distributions along plate 
thickness are more sensitive to mode mixity than load biaxiality. 
 
 
CONCLUSIONS 
 
Two constraint concepts are analyzed with respect to their capability of characterizing 
load biaxiality and mode mixity effects. For a given radial distance the out-of-plane 
constraint factor Tz and the stress triaxiality parameter h are monotonic decreasing 
functions of the in-plane non-singular term T combining the influence of load biaxiality 
and mode mixity. It is found that the out-of-plane constraint factors behavior for the 
reference plane strain solution and the finite size 3D solids differ significantly with 
increasing of the crack front distance. Discrepancies in constraint parameters 
distributions along crack front towards the plate thickness have been observed under 
different biaxial loading conditions and creep time of the power law hardening material. 
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